精英家教网 > 高中数学 > 题目详情
1.已知圆(x+a)2+y2=1与圆x2+y2=16没有公共点,则正数a的取值范围为(0,3)∪(5,+∞).

分析 求解两个圆有公共点的范围,然后求解正数a的取值范围.

解答 解:圆(x+a)2+y2=1圆心(-a,0)半径为1;圆x2+y2=16圆心(0,0)半径为4,
如果两个圆有公共点,可得3≤|a|≤5,解得a∈[3,5]∪[-5,-3],
圆(x+a)2+y2=1与圆x2+y2=16没有公共点,则正数a的取值范围为:(0,3)∪(5,+∞).
故答案为:(0,3)∪(5,+∞).

点评 本题考查圆与圆的位置关系的应用,逆向思维是解题的策略,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知($\root{3}{x}$+$\frac{1}{2\sqrt{x}}$)n(n∈N*)的展开式中前三项的系数成等差数列.
(1)求展开式中二项式系数最大的项;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.平行四边形ABCD中,AB=2,AD=1,$∠BAD=\frac{π}{3}$,则|$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AC}$|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$cos({-\frac{4π}{3}})$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在△ABC中,D是边BC上一点,$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足an+2+an=an+1,且a1=2,a2=3,则a2017=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|x2>4},N={x|1<x<3},则N∩(∁RM)=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y关于x的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

同步练习册答案