分析 利用平面向量的平行四边形法则得到$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AC}$=$2\overrightarrow{AC}$=2($\overrightarrow{AB}+\overrightarrow{AD}$),然后配方展开,借助于数量积公式得到数值,然后开方求模长.
解答 解:由已知得到$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AC}$=$2\overrightarrow{AC}$=2($\overrightarrow{AB}+\overrightarrow{AD}$),所以|$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AC}$|2=4($\overrightarrow{AB}+\overrightarrow{AD}$)2=4(${\overrightarrow{AB}}^{2}+{\overrightarrow{AD}}^{2}+2\overrightarrow{AB}•\overrightarrow{AD}$)=4(4+1+2)=28,
所以|$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AC}$|=$\sqrt{24}$=$2\sqrt{7}$;
故答案为:2$\sqrt{7}$.
点评 本题考查了平面向量的模长计算;运用了模长的平方与向量的平方相等.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com