精英家教网 > 高中数学 > 题目详情
20.如图,在杨辉三角中,斜线l上方,从1开始箭头所示的数组成一个锯齿数列:1,3,3,4,6,5,10,…,记其前n项和为Sn,则S19等于283.

分析 由图中锯齿形数列排列,发现规律:奇数项的第n项可以表示成正整数的前n项和的形式,偶数项构成以3为首项,公差是1的等差数列.由此再结合等差数列的通项与求和公式,即可得到S19的值.

解答 解:根据图中锯齿形数列的排列,发现
a1=1,a3=3=1+2,a5=6=1+2+3,…,a19=1+2+3+…+10,
而a2=3,a4=4,a6=5,…,a18=11,
∴前19项的和S19=[1+(1+2)+(1+2+3)+…+(1+2+…+10)]+(3+4+5+…+11)=283.
故选C故答案为:283.

点评 本题以杨辉三角为例,求锯齿形数列的前n项和,着重考查了等差数列的通项与求和公式和归纳推理的一般方法等知识点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示的几何体P-ABCD中,四边形ABCD为菱形,∠ABC=120°,AB=a,$PB=\sqrt{3}a$,PB⊥AB,平面ABCD⊥平面PAB,AC∩BD=O,E为PD的中点,G为平面PAB内任一点.
(1)在平面PAB内,过G点是否存在直线l使OE∥l?如果不存在,请说明理由,如果存在,请说明作法;
(2)过A,C,E三点的平面将几何体P-ABCD截去三棱锥D-AEC,求剩余几何体AECBP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知($\root{3}{x}$+$\frac{1}{2\sqrt{x}}$)n(n∈N*)的展开式中前三项的系数成等差数列.
(1)求展开式中二项式系数最大的项;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x,y∈R+,$\frac{1}{x+1}+\frac{1}{y+1}=\frac{1}{2}$,则xy的最小值为(  )
A.1B.9C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.公差不为零的等差数列{an}的首项为1,且a2,a5,a14依次构成等比数列,则对一切正整数n,$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}$的值可能为(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{4}{9}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在半径为2cm的圆中,有一条弧长为$\frac{π}{3}$ cm,它所对的圆心角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.平行四边形ABCD中,AB=2,AD=1,$∠BAD=\frac{π}{3}$,则|$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AC}$|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|x2>4},N={x|1<x<3},则N∩(∁RM)=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

同步练习册答案