18£®ÈçͼËùʾµÄ¼¸ºÎÌåP-ABCDÖУ¬ËıßÐÎABCDΪÁâÐΣ¬¡ÏABC=120¡ã£¬AB=a£¬$PB=\sqrt{3}a$£¬PB¡ÍAB£¬Æ½ÃæABCD¡ÍÆ½ÃæPAB£¬AC¡ÉBD=O£¬EΪPDµÄÖе㣬GÎªÆ½ÃæPABÄÚÈÎÒ»µã£®
£¨1£©ÔÚÆ½ÃæPABÄÚ£¬¹ýGµãÊÇ·ñ´æÔÚÖ±ÏßlʹOE¡Îl£¿Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£¬Èç¹û´æÔÚ£¬Çë˵Ã÷×÷·¨£»
£¨2£©¹ýA£¬C£¬EÈýµãµÄÆ½Ãæ½«¼¸ºÎÌåP-ABCD½ØÈ¥ÈýÀâ×¶D-AEC£¬ÇóÊ£Ó༸ºÎÌåAECBPµÄÌå»ý£®

·ÖÎö £¨1£©ÓÉÌâ¿ÉÖªOΪBDµÄÖе㣬ÓÖEΪPDµÄÖе㣬¿ÉµÃOE¡ÎPB£®ÈôµãGÔÚÖ±ÏßPBÉÏ£¬ÔòÖ±ÏßPB¼´ÎªËùÇó×÷Ö±Ïßl£¬ÓÐOE¡Îl£»ÈôµãG²»ÔÚÖ±ÏßPBÉÏ£¬ÔÚÆ½ÃæPABÄÚ£¬¹ýµãG×÷Ö±Ïßl£¬Ê¹l¡ÎPB£¬ÓÉÆ½Ðй«Àí¿ÉµÃOE¡Îl£¬¼´¹ýGµã´æÔÚÖ±ÏßlʹOE¡Îl£»
£¨2£©Á¬½ÓEA£¬EC£¬ÔòÆ½ÃæACE½«¼¸ºÎÌå·Ö³ÉÁ½²¿·Ö£¬ÀûÓõȻý·¨Çó³öVD-AEC=VE-ACD=$\frac{1}{3}{S_{¡÷ACD}}•EO$=$\frac{1}{4}{V_{P-ABCD}}=\frac{1}{8}{a^3}$£¬ÔÙÓÉVP-ABCD-VD-EACÇóµÃºÎÌåAECBPµÄÌå»ý£®

½â´ð ½â£º£¨1£©¹ýGµã´æÔÚÖ±ÏßlʹOE¡Îl£¬ÀíÓÉÈçÏ£º
ÓÉÌâ¿ÉÖªOΪBDµÄÖе㣬ÓÖEΪPDµÄÖе㣬
¡àÔÚ¡÷PBDÖУ¬ÓÐOE¡ÎPB£®
ÈôµãGÔÚÖ±ÏßPBÉÏ£¬ÔòÖ±ÏßPB¼´ÎªËùÇó×÷Ö±Ïßl£¬
¡àOE¡Îl£»
ÈôµãG²»ÔÚÖ±ÏßPBÉÏ£¬ÔÚÆ½ÃæPABÄÚ£¬
¹ýµãG×÷Ö±Ïßl£¬Ê¹l¡ÎPB£¬
ÓÖOE¡ÎPB£¬¡àOE¡Îl£¬
¼´¹ýGµã´æÔÚÖ±ÏßlʹOE¡Îl£»
£¨2£©Á¬½ÓEA£¬EC£¬ÔòÆ½ÃæACE½«¼¸ºÎÌå·Ö³ÉÁ½²¿·Ö£º
ÈýÀâ×¶D-AECÓ뼸ºÎÌåAECBP£¨ÈçͼËùʾ£©£®
¡ßÆ½ÃæABCD¡ÍÆ½ÃæPAB£¬ÇÒ½»ÏßΪAB£¬
ÓÖPB¡ÍAB£¬¡àPB¡ÍÆ½ÃæABCD£®
¹ÊPBΪ¼¸ºÎÌåP-ABCDµÄ¸ß£®
ÓÖËıßÐÎABCDΪÁâÐΣ¬¡ÏABC=120¡ã£¬AB=a£¬$PB=\sqrt{3}a$£¬
¡àSËıßÐÎABCD=2¡Á$\frac{{\sqrt{3}}}{4}{a^2}=\frac{{\sqrt{3}}}{2}{a^2}$£¬
¡à${V_{P-ABCD}}=\frac{1}{3}{S_{ËıßÐÎABCD}}•PB$=$\frac{1}{3}¡Á\frac{{\sqrt{3}}}{2}{a^2}¡Á\sqrt{3}a=\frac{1}{2}{a^3}$£®
ÓÖOE¡ÎPB£¬OE=$\frac{1}{2}PB$£¬¡àOE¡ÍÆ½ÃæACD£¬
¡àVD-AEC=VE-ACD=$\frac{1}{3}{S_{¡÷ACD}}•EO$=$\frac{1}{4}{V_{P-ABCD}}=\frac{1}{8}{a^3}$£¬
¡à¼¸ºÎÌåAECBPµÄÌå»ýV=VP-ABCD-VD-EAC=$\frac{1}{2}{a^3}-\frac{1}{8}{a^3}=\frac{3}{8}{a^3}$£®

µãÆÀ ±¾Ì⿼²éÆ½ÃæÓëÆ½Ãæ´¹Ö±µÄÐÔÖÊ£¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦ºÍ˼άÄÜÁ¦£¬ÑµÁ·ÁËÀûÓõȻý·¨Çó¶àÃæÌåµÄÌå»ý£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®º¯Êýy=loga£¨x+2£©-1£¨a£¾0£¬a¡Ù1£©µÄͼÏóºã¹ý¶¨µãA£¬ÈôµãAÔÚÖ±Ïßmx+ny+1=0ÉÏ£¬ÆäÖÐm£¾0£¬n£¾0£¬Ôò$\frac{1}{m}$+$\frac{2}{n}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®3+2$\sqrt{2}$B£®3+2$\sqrt{3}$C£®7D£®11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍÊÇSn£¬ÇÒSn=2an-n
£¨¢ñ£©ÇóÖ¤£ºÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ»²¢ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨¢ò£©ÊýÁÐ{bn}Âú×ãbn=$\frac{2n}{{a}_{n}+1}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨¢ó£©Èô²»µÈʽ£¨-1£©n¦Ë£¼Tn+$\frac{n}{{2}^{n-1}}$¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬Çó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚËÄÀâ×¶E-ABCDÖУ¬µ×ÃæABCDΪÕý·½ÐΣ¬AE¡ÍÆ½ÃæCDE£¬ÒÑÖªAE=DE=2£¬FΪÏß¶ÎDFµÄÖе㣮
£¨I£©ÇóÖ¤£ºBE¡ÎÆ½ÃæACF£»
£¨II£©ÇóÆ½ÃæBCFÓëÆ½ÃæBEFËù³ÉÈñ¶þÃæ½ÇµÄÓàÏҽǣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êýy=sinx+ln|x|ÔÚÇø¼ä[-3£¬3]µÄͼÏó´óÖÂΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚ¡÷ABCÖУ¬ÒÑÖªa£¬b£¬c·Ö±ðΪ¡ÏA£¬¡ÏB£¬¡ÏCËù¶ÔµÄ±ß£¬ÇÒa=4£¬b=4$\sqrt{3}$£¬¡ÏA=30¡ã£¬Ôò¡ÏBµÈÓÚ$\frac{¦Ð}{3}$£¬»ò$\frac{2¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{2}^{x-1}£¨x¡Ý1£©}\\{3x-2£¨x£¼1£©}\end{array}\right.$£¬Èô²»µÈʽ$f£¨{{{cos}^2}¦È+¦Ësin¦È-\frac{1}{4}}£©+\frac{1}{2}¡Ý0$¶ÔÈÎÒâµÄ$¦È¡Ê[{0£¬\frac{¦Ð}{2}}]$ºã³ÉÁ¢£¬ÔòÕûÊý¦ËµÄ×îСֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚËÄÀâ×¶ÖÐS-ABCDÖУ¬AB¡ÍAD£¬AB¡ÎCD£¬CD=3AB=3£¬
Æ½ÃæSAD¡ÍÆ½ÃæABCD£¬EÊÇÏß¶ÎADÉÏÒ»µã£¬AE=ED=$\sqrt{3}$£¬SE¡ÍAD£®
£¨1£©Ö¤Ã÷£ºÆ½ÃæSBE¡ÍÆ½ÃæSEC
£¨2£©ÈôSE=1£¬ÇóÖ±ÏßCEÓëÆ½ÃæSBCËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èçͼ£¬ÔÚÑî»ÔÈý½ÇÖУ¬Ð±ÏßlÉÏ·½£¬´Ó1¿ªÊ¼¼ýÍ·ËùʾµÄÊý×é³ÉÒ»¸ö¾â³ÝÊýÁУº1£¬3£¬3£¬4£¬6£¬5£¬10£¬¡­£¬¼ÇÆäǰnÏîºÍΪSn£¬ÔòS19µÈÓÚ283£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸