| A. | 3+2$\sqrt{2}$ | B. | 3+2$\sqrt{3}$ | C. | 7 | D. | 11 |
分析 函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A(-1,-1),可得m+n=1.于是$\frac{1}{m}$+$\frac{2}{n}$=(m+n)$(\frac{1}{m}+\frac{2}{n})$=3+$\frac{n}{m}$+$\frac{2m}{n}$,再利用基本不等式的性质即可得出.
解答 解:函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A(-1,-1),
∵点A在直线mx+ny+1=0上,其中m>0,n>0,∴-m-n+1=0,即m+n=1.
则$\frac{1}{m}$+$\frac{2}{n}$=(m+n)$(\frac{1}{m}+\frac{2}{n})$=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{\frac{n}{m}•\frac{2m}{n}}$=3+2$\sqrt{2}$,当且仅当n=$\sqrt{2}$m=2-$\sqrt{2}$时取等号.
故选:A.
点评 本题考查了对数函数的性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{24}{7}$ | C. | $-\frac{21}{24}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$•$\overrightarrow{b}$=2 | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$ | C. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| | D. | $\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com