分析 数列{an}满足:a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$+1=2$(\frac{1}{{a}_{n}}+1)$,可得$\frac{1}{{a}_{n}}$+1=2n,代入bn+1=(n-2λ)$(\frac{1}{{a}_{n}}+1)$=(n-2λ)•2n,数列{bn}是单调递增数列,n≥2时,利用bn+1>bn,可得λ<$\frac{3}{2}$.但是当n=1时,b2>b1,即可得出.
解答 解:∵数列{an}满足:a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),
∴两边取倒数,化为$\frac{1}{{a}_{n+1}}$=1+$\frac{2}{{a}_{n}}$,变形为:$\frac{1}{{a}_{n+1}}$+1=2$(\frac{1}{{a}_{n}}+1)$,
∴数列{$\frac{1}{{a}_{n}}$+1}是等比数列,首项为$\frac{1}{{a}_{1}}$+1=2,公比为2,
∴$\frac{1}{{a}_{n}}$+1=2n,
∴bn+1=(n-2λ)$(\frac{1}{{a}_{n}}+1)$=(n-2λ)•2n,
∵数列{bn}是单调递增数列,n≥2时,
∴bn+1>bn,
∴(n-2λ)•2n>(n-1-2λ)•2n-1,
化为:λ<$\frac{n+1}{2}$,
解得λ<$\frac{3}{2}$.
但是当n=1时,
b2>b1,∵b1=-$\frac{3}{2}$λ,
∴(1-2λ)•2>-$\frac{3}{2}$λ,
解得λ<$\frac{4}{5}$,
∴λ∈$(-∞,\frac{4}{5})$.
故答案为:$(-∞,\frac{4}{5})$.
点评 本题考查了等差数列的通项公式及其性质、数列递推关系、单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 类别 | 达到精品级 | 未达到精品级 | 总计 |
| 高级技工 | 22 | 6 | 28 |
| 中级技工 | 10 | 10 | 20 |
| 总计 | 32 | 16 | 48 |
| $\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$ | $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$ | $\sum_{i=1}^{6}{n}_{i}$ 2 | $\sum_{i=1}^{6}{t}_{i}$ 2 | $\sum_{i=1}^{6}{n}_{i}{t}_{i}$ | $\sum_{i=1}^{6}$(ni-$\overline{n}$)2 | $\sum_{i=1}^{6}$(ti-$\overline{t}$)2 | $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) |
| 4.5 | 4.125 | 139 | 109.562 | 112.75 | 17.5 | 7.468 | 11.375 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3+2$\sqrt{2}$ | B. | 3+2$\sqrt{3}$ | C. | 7 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{9}{4}$] | B. | [0,2] | C. | [0,3] | D. | [0,$\frac{9}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,4) | B. | (-1,-1) | C. | (1,1)或(-1,-1) | D. | (1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com