精英家教网 > 高中数学 > 题目详情
12.若曲线y=x3,在点P处的切线方程为y=3x-2,则点P的坐标为(  )
A.(2,4)B.(-1,-1)C.(1,1)或(-1,-1)D.(1,1)

分析 设出P的坐标,表示出切线方程,从而求出P的坐标即可.

解答 解:设P(a,a3),
则y′=3x2,y′|x=a=3a2
故切线方程是:y-a3=3a2(x-a),
即y=3a2x-2a3,由y=3x-2,得:a=1,
故P(1,1),
故选:D.

点评 本题考查了切线方程问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=lnx-x+\frac{1}{x}$,若a=f(3),b=f(π),c=f(5),则(  )
A.c<b<aB.c<a<bC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.a,b为正实数,若函数f(x)=ax3+bx+ab-1是奇函数,则f(2)的最小值是(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-2λ)•($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-$\frac{3}{2}$λ,且数列{bn}是单调递增数列,则实数λ的取值范围是$(-∞,\frac{4}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx,设a=f($\frac{6}{5}$),b=f($\frac{3}{2}$),c=f($\frac{1}{2}$),则(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱柱ABCD-A1B1C1D1中,侧棱CC1垂直于底面,E为侧棱CC1上的点,底面ABCD为正方形,底面边长|AB|=2,侧棱|BB1|=4,|CE|=1
(1)求证,A1C⊥平面BED;
(2)求A1B与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列结论正确的是(  )
A.两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱
B.若△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,则△ABC是钝角三角形
C.函数f(x)=x+$\frac{4}{x-1}$(x>1)的最小值为5
D.若G2=ab,则G是a,b的等比中项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足${a_1}+2{a_2}+…+n{a_n}=(n-1){2^{n+1}}+2$,n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=\frac{1}{{{{log}_2}{a_n}•{{log}_2}{a_{n+1}}}}$,Tn=b1+b2+…+bn,求证:对任意的n∈N*,Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线y=-2mx-6与直线y=(m-3)x+7平行,则m的值为(  )
A.-1B.1或-1C.1D.3

查看答案和解析>>

同步练习册答案