精英家教网 > 高中数学 > 题目详情
7.已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx,设a=f($\frac{6}{5}$),b=f($\frac{3}{2}$),c=f($\frac{1}{2}$),则(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

分析 根据题意,由函数在(0,1)上的解析式可得函数f(x)在(0,1)上是增函数,结合函数的周期性与奇偶性可得a、b、c的值,比较即可得答案.

解答 解:根据题意,对于f(x),当0<x<1时,f(x)=lgx,即函数f(x)在(0,1)上是增函数,
又由f(x)是周期为2的奇函数,
a=f($\frac{6}{5}$)=f(-$\frac{4}{5}$)=-f($\frac{4}{5}$)=-lg$\frac{4}{5}$=lg$\frac{5}{4}$,b=f($\frac{3}{2}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-lg$\frac{1}{2}$=lg2,c=f($\frac{1}{2}$)=lg$\frac{1}{2}$=-lg2,
比较可得:c<a<b;
故选:D.

点评 本题考查函数的奇偶性与单调性的综合应用,涉及函数的周期性,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中,P是椭圆$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={0,2},无穷数列{an}满足an∈M,且$t=\frac{a_1}{3}+\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+\frac{{{a_{100}}}}{{{3^{100}}}}$,则实数t一定不属于(  )
A.[0,1)B.(0,1]C.$[\frac{1}{3},\frac{2}{3})$D.$(\frac{1}{3},\frac{2}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$,则$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范围是(  )
A.(-∞,$\frac{9}{4}$]B.[0,2]C.[0,3]D.[0,$\frac{9}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若点($\sqrt{3}$,2)在直线l:ax+y+1=0上,则直线l的倾斜角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线y=x3,在点P处的切线方程为y=3x-2,则点P的坐标为(  )
A.(2,4)B.(-1,-1)C.(1,1)或(-1,-1)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知z1、z2为复数,且|z1|=2,若z1+z2=2i,则|z1-z2|的最大值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知动点P在椭圆$\frac{x^2}{36}+\frac{y^2}{27}=1$上,若点A的坐标为(3,0),点M满足$|\overrightarrow{AM}|=1$,$\overrightarrow{PM}•\overrightarrow{AM}=0$,则$|\overrightarrow{PM}|$的最小值是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-1,x>0\\-{x^2}-2x,x≤0\end{array}\right.$,若函数g(x)=f(x)+3m有3个零点,则实数m的取值范围是(-$\frac{1}{3}$,0).

查看答案和解析>>

同步练习册答案