分析 (Ⅰ)当n>1时,${a_1}+2{a_2}+…+n{a_n}=(n-1){2^{n+1}}+2$,n∈N*…①,${a}_{1}+2{a}_{2}+…+(n-1){a}_{n-1}=(n-2){2}^{n}$…②,①-②得$n{a_n}=(n-1){2^{n+1}}-(n-2){2^n}=n•{2^n}$,${a_n}={2^n}$;
(Ⅱ)因为${a_n}={2^n}$,${b_n}=\frac{1}{{{{log}_2}{a_n}•{{log}_2}{a_{n+1}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,累加求和即可证明.
解答 解:(Ⅰ)当n>1时,${a_1}+2{a_2}+…+n{a_n}=(n-1){2^{n+1}}+2$,n∈N*…①.
${a}_{1}+2{a}_{2}+…+(n-1){a}_{n-1}=(n-2){2}^{n}$…②
①-②得$n{a_n}=(n-1){2^{n+1}}-(n-2){2^n}=n•{2^n}$,${a_n}={2^n}$,
当n=1时,a1=2,所以${a_n}={2^n},n∈N*$.
(Ⅱ)因为${a_n}={2^n}$,${b_n}=\frac{1}{{{{log}_2}{a_n}•{{log}_2}{a_{n+1}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
因此${T_n}=({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})$=$1-\frac{1}{n+1}$,
所以Tn<1.
点评 本题考查了数列的递推式,、裂项求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (2,4) | B. | (-1,-1) | C. | (1,1)或(-1,-1) | D. | (1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com