分析 令f(x)>-$\frac{1}{2}$,解得:x>$\frac{1}{2}$,若对任意θ∈[0,$\frac{π}{2}$],不等式f(cos2θ+λsinθ-$\frac{1}{4}$)+$\frac{1}{2}$≥0恒成立,则对任意θ∈[0,$\frac{π}{2}$],cos2θ+λsinθ-$\frac{1}{4}$≥$\frac{1}{2}$恒成立,进而得到答案.
解答 解:∵f(x)=$\left\{\begin{array}{l}{{2}^{x-1}(x≥1)}\\{3x-2(x<1)}\end{array}\right.$,
令f(x)>-$\frac{1}{2}$,
解得:x>$\frac{1}{2}$,
若对任意θ∈[0,$\frac{π}{2}$],不等式f(cos2θ+λsinθ-$\frac{1}{4}$)+$\frac{1}{2}$≥0恒成立,
则对任意θ∈[0,$\frac{π}{2}$],cos2θ+λsinθ-$\frac{1}{4}$≥$\frac{1}{2}$恒成立,
即1-sin2θ+λsinθ-$\frac{1}{4}$≥$\frac{1}{2}$恒成立,
当θ=0时,不等式恒成立,
当θ≠0时,1-sin2θ+λsinθ-$\frac{1}{4}$≥$\frac{1}{2}$可化为:λ≥$\frac{{sin}^{2}θ-\frac{1}{4}}{sinθ}$=sinθ-$\frac{1}{4sinθ}$,
当θ=$\frac{π}{2}$时,sinθ-$\frac{1}{4sinθ}$取最大值$\frac{3}{4}$,
故λ>$\frac{3}{4}$,
故整数λ的最小值为1,
故答案为:1.
点评 本题考查的知识点是分段函数的应用,函数恒成立问题,函数的最值,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{2},\sqrt{e}})$ | B. | $[{\frac{1}{2},\sqrt{e}})$ | C. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$ | D. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com