精英家教网 > 高中数学 > 题目详情
16.点P(x,y)在不等式组$\left\{\begin{array}{l}x+y≥1\\ x≥0{,_{\;}}y≥0\end{array}\right.$所表示的区域内,则$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的取值范围是[1,$\sqrt{2}$].

分析 画出约束条件的可行域,化简目标函数利用斜率的范围,求解目标函数的范围即可.

解答 解:不等式组$\left\{\begin{array}{l}x+y≥1\\ x≥0{,_{\;}}y≥0\end{array}\right.$所表示的区域如图:
则$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2}{\frac{x}{y}+\frac{y}{x}}}$,$\frac{y}{x}$∈[0,+∞).
$\frac{y}{x}+\frac{x}{y}$≥2,当且仅当x=y是取等号,则$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的最大值为:$\sqrt{2}$.
当y=0时,则$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的最小值为:1.
所以$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的取值范围是[1,$\sqrt{2}$].
故答案为:[1,$\sqrt{2}$].

点评 本题考查线性规划的简单应用,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{a}{3}{x^3}+\frac{b}{2}{x^2}+cx(a≠0)$与g(x)=xlnx.
(1)若f(x)的减区间是(1,3),且f'(x)的最小值为-1求f(x)的解析式;
(2)当a=1,c=2时,若函数ϕ(x)=f'(x)+g(x)有零点,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知四边形ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点,
(1)求证:MN∥平面PAD
(2)若PA=AD,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将函数$y=sin(2x+\frac{π}{6})$的图象向左平移m(m>0)个单位长度,得到的函数y=f(x)在区间$[-\frac{π}{12},\frac{5π}{12}]$上单调递减,则m的最小值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}等比数列,且a1=-1,a9=-9,则a5=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}|lg|x||,(x≠0)\\ 0,(x=0)\end{array}\right.$,则方程f2(x)-f(x)=0的实根共有7个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.3+2$\sqrt{2}$B.3+2$\sqrt{3}$C.7D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,且a2=2,S5=15.
(Ⅰ)求数列{an}的通项公式an及前n项和Sn
(Ⅱ)记bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF的中点.
(I)求证:BE∥平面ACF;
(II)求平面BCF与平面BEF所成锐二面角的余弦角.

查看答案和解析>>

同步练习册答案