精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\left\{\begin{array}{l}|lg|x||,(x≠0)\\ 0,(x=0)\end{array}\right.$,则方程f2(x)-f(x)=0的实根共有7个.

分析 求解方程f2(x)-f(x)=0,可得f(x)=0或f(x)=1.画出函数$f(x)=\left\{\begin{array}{l}|lg|x||,(x≠0)\\ 0,(x=0)\end{array}\right.$的图象,数形结合得答案.

解答 解:由f2(x)-f(x)=0,得f(x)=0或f(x)=1.
画出函数$f(x)=\left\{\begin{array}{l}|lg|x||,(x≠0)\\ 0,(x=0)\end{array}\right.$的图象如图,

由图可知,f(x)=0可得x有3个不同实根;
f(x)=1可得x有4个不同实根.
∴方程f2(x)-f(x)=0的实根共有7个.
故答案为:7个.

点评 本题考查函数与方程的应用,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.过圆C:(x-2)2+y2=4 上的点A $({3,\sqrt{3}})$ 的切线方程为x+$\sqrt{3}$y-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在五棱锥P-ABCDE中,PA=AB=AE=2a,PB=PE=$2\sqrt{2}$a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.G为PE的中点.
(1)求AG与平面PDE所成角的大小
(2)求点C到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x1、x2是方程x2+mx+3=0(m∈R)的两虚根,则|x1|+|x2|=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.点P(x,y)在不等式组$\left\{\begin{array}{l}x+y≥1\\ x≥0{,_{\;}}y≥0\end{array}\right.$所表示的区域内,则$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的取值范围是[1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,如果sinA=sinC,B=30°,角B所对的边长b=2,则△ABC的面积为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(-2,0),$\overrightarrow{b}$=(1,1),则下列结论正确的是(  )
A.$\overrightarrow{a}$•$\overrightarrow{b}$=2B.$\overrightarrow{a}$∥$\overrightarrow{b}$C.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|D.$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+lnx(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(2)求f(x)的单调区间;
(3)若对任意x∈(0,+∞),均有f(x)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为偶数且点数之差的绝对值为2},则P(A)=(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

同步练习册答案