精英家教网 > 高中数学 > 题目详情
16.$cos({-\frac{4π}{3}})$=-$\frac{1}{2}$.

分析 由条件利用诱导公式进行化简所给的式子,可得结果.

解答 解:cos(-$\frac{4π}{3}$)=cos(-2π+$\frac{2π}{3}$)=cos$\frac{2π}{3}$=cos(π-$\frac{π}{3}$)=-cos$\frac{π}{3}$=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.

点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若数列{an}是以2为首项,3为公比的等比数列,则a2+a4+a6+…+a2n的值为(  )
A.32n-1B.$\frac{{3}^{2n}-1}{4}$C.$\frac{3({3}^{2n}-1)}{4}$D.$\frac{3({3}^{n}-1)}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(3-2x)3(2x+1)4展开式中所有x偶次项的系数之和为103.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等差数列{an}中,公差d≠0,已知S5=20,且a1,a3,a7成等比数列.设Tn为数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,若存在n∈N*,使得Tn-λan+1≥0成立,则实数λ的取值范围(-∞,$\frac{1}{16}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=|x-1|-|x-a|(a为常数).
(1)若f(2)<f(a)-1,求实数a的取值范围;
(2)若f(x)的值域为A,且A⊆[-2,3],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆(x+a)2+y2=1与圆x2+y2=16没有公共点,则正数a的取值范围为(0,3)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β是两个不同的平面,a,b是两条不同的直线,则下面的命题中不正确的是(  )
A.若a∥b,a⊥α,则b⊥αB.若a⊥β,a⊥α,则α∥β
C.若a⊥α,a?β,则α⊥βD.若a∥α,α∩β=b,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知α∈(0,$\frac{π}{2}$),sin($\frac{π}{6}$-α)=-$\frac{1}{3}$,则cosα的值为$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知{an}是等差数列,Sn是其前n项和,若2a7-a5-3=0,则S17的值是51.

查看答案和解析>>

同步练习册答案