精英家教网 > 高中数学 > 题目详情
6.已知{an}是等差数列,Sn是其前n项和,若2a7-a5-3=0,则S17的值是51.

分析 设等差数列{an}的公差为d,由2a7-a5-3=0,可得2(a1+6d)-(a1+4d)-3=0,化为:a9=3.利用S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17a9,即可得出.

解答 解:设等差数列{an}的公差为d,∵2a7-a5-3=0,∴2(a1+6d)-(a1+4d)-3=0,
化为:a1+8d=3,即a9=3.
则S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17a9=17×3=51.
故答案为:51.

点评 本题考查了等差数列通项公式与求和公式、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.$cos({-\frac{4π}{3}})$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=cos2x的图象向左平移$φ({0<φ<\frac{π}{2}})$个单位后得到函数g(x)的图象,若使|f(x1)-g(x2)|=2成立x1,x2的满足${|{{x_1}-{x_2}}|_{min}}=\frac{π}{6}$,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=lnx-x的单调递增区间为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在区间$[{\frac{π}{6},\frac{π}{2}}]$上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y关于x的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}的前n项和为Sn,且S2=4,S4=16,数列{bn}满足bn=an+an+1,则数列{bn}的前9和T9为(  )
A.20B.80C.166D.180

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an-na${{\;}_{n}}^{2}$=0,数列{bn}的前n项和为Sn且Sn=1-bn
(1)求{an}和{bn}的通项;
(2)令cn=$\frac{{b}_{n}}{{a}_{n}}$,
①求{cn}的前n项和Tn
②是否存在正整数m满足m>3,c2,c3,cm成等差数列?若存在,请求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.二项式(9x+$\frac{1}{3\sqrt{x}}$)18的展开式的常数项为18564(用数字作答).

查看答案和解析>>

同步练习册答案