精英家教网 > 高中数学 > 题目详情
(2013•韶关二模)以下四个命题
①在一次试卷分析中,从每个试室中抽取第5号考生的成绩进行统计,是简单随机抽样;
②样本数据:3,4,5,6,7的方差为2;
③对于相关系数r,|r|越接近1,则线性相关程度越强;
④通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下列联表:

总计
走天桥 40 20 60
走斑马线 20 30 50
总计 60 50 110
附表:
P(K2≥k) 0.05 0.010 0.001
k 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得,k2=
110×(40×30-20×20)
60×50×60×50
=7.8

则有99%以上的把握认为“选择过马路方式与性别有关”.其中正确的命题序号是
②③④
②③④
分析:①系统抽样的特点是从比较多比较均衡的个体中抽取一定的样本,在所给的四个抽样中,只有在在超市门口随机的抽取一个人进行询问,这是一个简单随机抽样.
②先把这组数据的5个数字加起来求和,再除以9即可求出这组数据的平均数,然后再根据方差公式求解即可.
③处理本题时可根据线性回归中,相关系数的定义,利用相关系数r进行判断:而且|r|越接近于1,相关程度越强;|r|越接近于0,相关程度越弱,即可得答案.
④把所给的观测值与临界值进行比较,发现它大于6.635,得到有99%以上的把握认为“选择过马路的方式与性别有关”.
解答:解:①系统抽样的特点是从比较多比较均衡的个体中抽取一定的样本,并且抽取的样本具有一定的规律性,
在一次试卷分析中,从每个试室中抽取第5号考生的成绩进行统计,这是一个系统抽样,故错;
②(3+4+5+6+7)÷5=25÷9=5,
S2=
1
5
×(4+1+0+1+4)=2.正确;
③:根据相关系数的定义,变量之间的相关关系可利用相关系数r进行判断:|r|越接近于1,相关程度越强;|r|越接近于0,相关程度越弱,故可知③正确;
④:由题意,K2≈7.8
∵7.8>6.635,
∴有0.01=1%的机会错误,
即有99%以上的把握认为“选择过马路的方式与性别有关”,正确.
故答案为:②③④.
点评:本题考查系统抽样方法,平均数和方差公式,线性相关,独立性检验的应用等,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•韶关二模)函数f(x)=lnx-
1
x-1
的零点的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)在极坐标系中,过点A(1,-
π2
)引圆ρ=8sinθ的一条切线,则切线长为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)若a,b∈R,i为虚数单位,且(a+i)i=b+
5
2-i
,则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan∠PF2F1=3,则双曲线的离心率为
10
2
10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)已知椭圆
x2
a2
+
y2
a2-1
=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.
(1)求抛物线C的方程和点M、N的坐标;
(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

同步练习册答案