精英家教网 > 高中数学 > 题目详情
若A={x|x2+x-a>0},且1∉A,则a的取值范围为
{a|a≥2}
{a|a≥2}
分析:由1∉A,知集合A中没有元素1,又集合A中的元素是由一元二次不等式构成的解集,故可转化为一元二次不等式没有实数解1,即12+1-a≤0,解得a的范围.
解答:解:∵1∉A,∴集合A中没有元素1,
又集合A中的元素是由一元二次不等式构成的解集,
故问题可转化为一元二次不等式没有实数解1.
由12+1-a≤0,
解得 a≥2.
故答案为:{a|a≥2}.
点评:本题利用二次函数考查了集合元素的分布以及集合与集合间的运算问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x|x2+x-6=0},B={x|
1m
x+1=0}
,且A∪B=A,则实数m的值为
{-2,3}
{-2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知φ(x)=
a
x+1
,a
为正常数.(e=2.71828…);
(理科做)(1)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)在区间[1,e]上的最大值与最小值
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范围.
(文科做)(1)当a=2时描绘?(x)的简图
(2)若f(x)=?(x)+
1
?(x)
,求函数f(x)在区间[1,e]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x|x2-x-6>0},B={x|x2-3x-4<0},则A∩B=
{x|3<x<4}
{x|3<x<4}

查看答案和解析>>

同步练习册答案