精英家教网 > 高中数学 > 题目详情
如图2-4-18,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动且总保持PQ=PO,过Q作⊙O的切线交BA的延长线于点C.

2-4-18

(1)当∠QPA=60°时,请你对△QCP的形状作出猜想,并证明;

(2)当QP⊥AO时,△QCP的形状是___________三角形.

(3)由(1)、(2)得出的结论,请你进一步猜想,当点P在线段AM上运动到任何位置时△QCP一定是___________三角形.

解析:(1)△QCP是等边三角形,

证明:连结OQ,则CQ⊥OQ.

∵PQ=PO,∠QPC=60°,

∴∠POQ=∠PQO=30°.

∴∠C=∠CQO-∠POQ=60°.

∴∠CQP=∠C=∠QPC=60°.

∴△QPC是等边三角形.

(2)等腰直角(解析:略)

(3)等腰(解析:略).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码.统计结果如图,则取到号码为奇数的频率是(  )
卡片号码 1 2 3 4 5 6 7 8 9 10
取到的次数 13 8 5 7 6 13 18 10 11 9
A、0.53B、0.5
C、0.47D、0.37

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网现在“汽车”是很“给力”的名词.汽车厂商对某款汽车的维修费进行电脑模拟试验,分别以汽车使用年限n和前n年累计维修费Sn(万元)为横、纵坐标绘制成点,发现点(n,Sn)在函数y=ax2+bx(a≠0)的图象上(如图所示),其中A(5,1.05)、B(10,4.1).
(1)求出累计维修费Sn关于使用年数n的表达式,并求出第n年得维修费;
(2)汽车开始使用后每年均需维修,按国家质量标准规定,出售后前两年作为保修时间,在保修期间的维修费用由汽车厂商承担,保修期过后,汽车维修费用有车主承担.若某人以9.18万元的价格购买这款品牌车,求年平均耗资费的最小值.(年平均耗资费=
车价+车主承担的维修费使用年数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出.
(1)计算A,C两站距离,及B,C两站距离;
(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换.
(3)求10点时甲、乙两车的距离.
(参考数据:
2
≈1.4
3
≈1.7
6
≈2.4
331
≈18.2

查看答案和解析>>

科目:高中数学 来源: 题型:

某市教育局在中学开展“创新素质实践行”小论文的评比.各校交论文的时间为5月1日至30日,评委会把各校交的论文的件数按5天一组分组统计,绘制了频率分布直方图(如图).已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18.那么本次活动收到论文的篇数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-4-18(1),四边形ABCD是⊙O的内接四边形,A的中点,过A点的切线与CB的延长线交于点E.

           

  (1)                               (2)

图2-4-18

(1)求证:AB·DA=CD·BE;

(2)如图2-4-18(2),若点E在CB延长线上运动,使切线EA变为割线EFA,其他条件不变,问具备什么条件使原结论成立?

查看答案和解析>>

同步练习册答案