【题目】设函数![]()
当
时,求函数
的单调区间;
令
其图象上任意一点
处切线的斜率
恒成立,求实数
的取值范围;
当
时,令
若
与
的图象有两个交点
,求证:![]()
【答案】(1)单增区间为
单减区间为
.(2)
(3)见解析
【解析】
试题(1)先求导函数,再求导函数在定义区间上零点,列表分析导函数符号变化规律,确定函调单调区间(2)先根据导数几何意义得不等式,再利用参变分离法将不等式转化为对应函数最值
最大值 ,根据二次函数最值求得实数
的取值范围;(3)本小题较难,需作两次构造:一是消去a,构造以
为自变量的函数
,根据导数得其单调性,利用基本不等式得到
二是构造
利用导数易得单调性,可得
,即得![]()
试题解析:解:(1)
定义域为
,
,
令
解得
,令
解得
,
∴
的单增区间为
单减区间为
.
(2)![]()
∴
即![]()
令
,∴
在
上单调递增,
∴
∴
,∴![]()
(3)
定义域![]()
∴
①,
②
①+②得
即
,③
①-②得
即
,④
由③④得
,不妨设
,记
,
令
∴![]()
∴
在
上单调递增,∴![]()
∴
即
∴![]()
∴![]()
∴
即![]()
令
∴
∴
在
上单调递增.
又
∴![]()
即
∴![]()
科目:高中数学 来源: 题型:
【题目】已知点P(1,3),Q(1,2).设过点P的动直线与抛物线y=x2交于A,B两点,直线AQ,BQ与该抛物线的另一交点分别为C,D.记直线AB,CD的斜率分别为k1,k2.
(1)当
时,求弦AB的长;
(2)当
时,
是否为定值?若是,求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.
(1)记“选出2人参加义工活动的次数之和为4”为事件
,求事件
发生的概率;
(2)设
为选出2人参加义工活动次数之差的绝对值,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上下两个焦点分别为
,
,过点
与
轴垂直的直线交椭圆
于
、
两点,
的面积为
,椭圆
的离心力为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知
为坐标原点,直线
:
与
轴交于点
,与椭圆
交于
,
两个不同的点,若存在实数
,使得
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学家欧拉在1765年提出:三角形的外心、重心位于同一直线上,这条直线被后人称之为三角形的欧拉线,若
的顶点
,
,且
的欧拉线的方程为
.
(1)求
外心
(外接圆圆心)的坐标;
(2)求顶点
的坐标.
(注:如果
三个顶点坐标分别为
,
,
,则
重心的坐标是
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从柳州铁一中高二男生中随机选取100名学生,将他们的体重(单位:
)数据绘制成频率分布直方图,如图所示.
![]()
(1)估计该校的100名同学体重的平均值和方差(同一组数据用该组区间的中点值代表);
(2)若要从体重在
内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取2人,求被抽取的两位同学来自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是线段AB中点.
![]()
(1)证明:D1E⊥CE;
(2)求二面角D1﹣EC﹣D的大小的余弦值;
(3)求A点到平面CD1E的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com