精英家教网 > 高中数学 > 题目详情

已知的图像经过点,当时,恒有,求实数的取值范围.

.

解析试题分析:先根据函数的图像经过点,得到,将函数中的换成得到,结合得到,接着分三类进行讨论确定的值域,进而根据,得到不等式组,从中求解即可得到各种情况的取值范围,最后取并集即可.
试题解析:由
从而
①当时,,满足题意
②当时,
,有,即
③当时,
,有, 即
综上所述,实数.
考点:1.两角和差公式;2.分类讨论的思想;3.三角函数的图像与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,且函数的最大值为,最小值为
(1)求的值;
(2)(ⅰ)求函数的单调递增区间;
(ⅱ)求函数的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调增区间;
(2)求函数在区间上的最小值和最大值;
(3)若,求使取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递增区间;
(2)若函数图象上的两点的横坐标依次为,为坐标原点,求的外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(l)求函数的最小正周期;
(2)当时,求函数f(x)的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用五点作图法画出函数在一个周期内的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最大值,并写出取最大值时的取值集合;
(2)已知中,角的对边分别为求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量为常数且),函数上的最大值为
(1)求实数的值;
(2)把函数的图象向右平移个单位,可得函数的图象,若上为增函数,求取最大值时的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量
(1)若,求x的值
(2)设函数,求f(x)的最大值

查看答案和解析>>

同步练习册答案