精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x3+px+r,g(x)=15x2+qlnx(p,q,r∈R).
(I)当r=-35时f(x)和g(x)在x=1处有共同的切线,求p、q的值;
(II)已知函数h(x)=f(x)-g(x)在x=1处取得极大值-13,在x=x1和x=x2(x1≠x2)处取得极小值h(x1)和h(x2),若h(x1)+h(x2)<kln3-10成立,求整数k的最小值.
(Ⅰ) f′(x)=6x2+p,g′(x)=30x+
q
x

由题意得:
f′(1)=g′(1)
f(1)=g(1)
,故
6+p=30+q
2+p-35=15
,解得:
p=48
q=24
.      (5分)
(Ⅱ)∵h(x)=f(x)-g(x)=2x3+px+r-15x2-qlnx,
h′(x)=6x2+p-30x-
q
x

h′(1)=0
h(1)=-13
得:
6+p-30-q=0
2+p+r-15=-13
,得
q=p-24
r=-p

h′(x)=6x2+p-30x-
p-24
x
=
6x3-30x2+px-p+24
x
=
6x3-6x2-24x2+px-p+24
x
=
(x-1)(6x2-24x-24+p)
x

由题意知h(x)在x=x1和x=x2处取得极小值,则0<x1<1<x2
设m(x)=6x2-24x+p-24,则
m(0)>0
m(1)<0
,从而24<p<42.
x1+x2=4
x1x2=
p-24
6
,设x1x2=t,则0<t<3
.h(x1)+h(x2)=2(x13+x23)+p(x1+x2)-2p-15(x12+x22)-(p-24)ln(x1x2)
=2(x1+x2)[(x1+x2)2-3x1x2]+4p-2p-15[(x1+x2)2-2x1x2]-(p-24)ln(x1x2)
=-112+6•x1x2+2p-(p-24)ln(x1x2
=-112+6t+12t+48-6tlnt
=-64+18t-6tlnt.             (6分)
设F(t)=-64+18t-6tlnt,
则F′(t)=18-(6lnt+6)=6(2-lnt)>0,
∴F(t)在(0,3)上是增函数,
∴h(x1)+h(x2)<F(3)=-10-18ln3.
则kln3-10≥-10-18ln3,从而k≥-18.
即:所求的k的最小值为-18.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案