精英家教网 > 高中数学 > 题目详情
3.在△ABC中,D为边BC上的一点,BD=33,$sinB=\frac{5}{13}$,$cos∠ADC=\frac{3}{5}$.求:
(1)sin∠BAD;
(2)AD的长.

分析 (1)先求出sin∠ADC=$\frac{4}{5}$,cosB=$\frac{12}{13}$,由sin∠BAD=sin(∠ADC-B),利用正弦加法定理能求出结果.
(2)由正弦定理能求出AD.

解答 解:(1)∵在△ABC中,D为边BC上的一点,cos∠ADC=$\frac{3}{5}$>0,
∴∠ADC<$\frac{π}{2}$,sin∠ADC=$\frac{4}{5}$,
又由已知得B<∠ADC,∴B<$\frac{π}{2}$,
∵$sinB=\frac{5}{13}$,∴cosB=$\frac{12}{13}$,
∴sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB
=$\frac{4}{5}×\frac{12}{13}$-$\frac{3}{5}×\frac{5}{13}$
=$\frac{33}{65}$.
(2)由正弦定理得$\frac{AD}{sinB}$=$\frac{BD}{sin∠BAD}$,
∴AD=$\frac{BD•sinB}{sin∠BAD}$=$\frac{33×\frac{5}{12}}{\frac{33}{65}}$=25.

点评 本题考查角的正弦值的求法,考查线段长的求法,是中档题,解题时要认真审题,注意正弦定理和正弦加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:选择题

设命题,则为( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:2017届浙江嘉兴市高三上学期基础测试数学试卷(解析版) 题型:选择题

若函数的图象可由函数的图象向右平移个单位长度变换得到,则的解析式是( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:2017届湖南石门县一中高三9月月考数学(文)试卷(解析版) 题型:选择题

已知上的可导函数,且对,均有,则有( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:2017届湖南石门县一中高三9月月考数学(文)试卷(解析版) 题型:选择题

已知命题,命题,若的必要不充分条件,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=sin(πx-$\frac{π}{3}$),若函数y=f(asinx+1),x∈R没有零点,则实数a的取值范围是(-$\frac{1}{3}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点A(2,1),B(-2,3),C(0,-3).
(1)若BC的中点为D,求直线AD的方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数$y=2sin(ωx+\frac{π}{3})(ω>0)$的图象分别向左、向右各平移$\frac{π}{3}$个单位后,所得的两个图象的对称轴重合,则ω的最小值为(  )
A.3B.$\frac{4}{3}$C.6D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知各项均不为零的数列{an}满足:a1=a2=1,an+2an=p•an+12(其中p为非零常数,n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{n{a}_{n+2}}{{a}_{n}}$,Sn为数列{bn}的前n项和,求Sn

查看答案和解析>>

同步练习册答案