分析 (1)根据开偶次根式,被开方数要大于等于0,分母不能为0,即可得到答案.
(2)利用二次函数的图象及性质即可求出x∈[1,4]函数的范围.
解答 解:(1)由题意:$\left\{\begin{array}{l}{3-x≥0}\\{x-1≠0}\end{array}\right.$
解得:x≤3且x≠1
故函数y=$\frac{\sqrt{3-x}}{x-1}$的定义域为{x|x≤3且x≠1}.
(2)由y=-x2+4x-2(1≤x≤4)
a=-1,开口向下,对称轴x=2,
由二次函数的图象及性质,可得:
当x=2时,函数y取得最大值,即${y}_{max}=-{2}^{2}+4×2-2=2$;
当x=4时,函数y取得最小值,即${y}_{min}=-{4}^{2}+4×4-2=-2$.
故函数y=-x2+4x-2(1≤x≤4)的值域为[-2,2].
点评 本题考查了定义域的求法和二次函数图象及性质在某区间范围内的运用.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{4}$ | C. | -$\frac{1}{4}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [$\frac{2}{3}$,$\frac{3}{4}$) | C. | [$\frac{4}{3}$,$\frac{3}{2}$) | D. | [$\frac{2}{3}$,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com