| A. | (0,1] | B. | [$\frac{2}{3}$,$\frac{3}{4}$) | C. | [$\frac{4}{3}$,$\frac{3}{2}$) | D. | [$\frac{2}{3}$,2) |
分析 设g(x)=m|x|,h(x)=|x-1|,画出函数g(x),h(x)的图象,结合图象得到关于m的不等式组,解出即可.
解答 解:由f(x)≥0,m>0得,m|x|≥|x-1|,
设g(x)=m|x|,h(x)=|x-1|,
作出两个函数的图象如图,![]()
若m|x|≥|x-1|的解集中的整数恰有3个,
则x=1,2,3是解集中的三个整数解,
则满足$\left\{\begin{array}{l}{g(4)<h(4)}\\{g(3)≥h(3)}\end{array}\right.$,即$\left\{\begin{array}{l}{4m<3}\\{3m≥2}\end{array}\right.$,
解得:$\frac{2}{3}$≤m<$\frac{3}{4}$,
故选B.
点评 本题考查了函数的交点问题,考查数形结合思想以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若|a|<b,则a2>b2 | B. | 若|a|>b,则a2>b2 | C. | 若a>b,则a2>b2 | D. | 若a>|b|,则a2>b2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com