分析 由原图和直观图面积之间的关系 $\frac{{S}_{直观图}}{{S}_{原图}}$=$\frac{\sqrt{2}}{4}$,求出原三角形的面积,再求直观图△A′B′C′的面积即可.
解答 解:正三角形ABC的边长为a,故面积为$\frac{\sqrt{3}}{4}$a2,而原图和直观图面积之间的关系 $\frac{{S}_{直观图}}{{S}_{原图}}$=$\frac{\sqrt{2}}{4}$,
故直观图△A′B′C′的面积为$\frac{\sqrt{6}}{16}$a2.
故答案为:$\frac{\sqrt{6}}{16}$a2.
点评 本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [$\frac{2}{3}$,$\frac{3}{4}$) | C. | [$\frac{4}{3}$,$\frac{3}{2}$) | D. | [$\frac{2}{3}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2] | B. | (-∞,2) | C. | [-1,+∞) | D. | [-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1,]∪[3,+∞) | B. | $[{-1,\frac{1}{7}}]$ | C. | $[{-1,0})∪({0,\frac{1}{7}}]$ | D. | (-∞,-1]∪[7,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x≤2} | B. | {x|-1<x<2} | C. | {x|x≥2或x≤-1} | D. | {x|x>2或x<-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{18}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com