| A. | (-∞,-1,]∪[3,+∞) | B. | $[{-1,\frac{1}{7}}]$ | C. | $[{-1,0})∪({0,\frac{1}{7}}]$ | D. | (-∞,-1]∪[7,+∞) |
分析 画出满足条件的平面区域,求出角点的坐标,结合z′=$\frac{y-2}{x+1}$的几何意义求出z的范围即可.
解答 解:画出满足条件的平面区域,如图示:
,
∵$z=\frac{x+1}{x+2y-3}$,∴$\frac{1}{z}$=$\frac{x+2y-3}{x+1}$=1+$\frac{2(y-2)}{x+1}$,
令z′=$\frac{y-2}{x+1}$,z′的几何意义表示平面区域内的点和(-1,2)点的直线的斜率,
由$\left\{\begin{array}{l}{2x+y+5=0}\\{x-y+1=0}\end{array}\right.$,解得A(-2,-1),
故KAD=$\frac{2+1}{-1+2}$=3,KCD=-1,
∴-1≤$\frac{1}{z}$≤7,
故-1≤z<0或0<z≤$\frac{1}{7}$,
故选:C.
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com