精英家教网 > 高中数学 > 题目详情
5.已知x,y满足不等式组$\left\{{\begin{array}{l}{2x-y+1≤0}\\{2x+y+5≥0}\\{x-y+1≥0}\end{array}}\right.$,则$z=\frac{x+1}{x+2y-3}$的取值范围为(  )
A.(-∞,-1,]∪[3,+∞)B.$[{-1,\frac{1}{7}}]$C.$[{-1,0})∪({0,\frac{1}{7}}]$D.(-∞,-1]∪[7,+∞)

分析 画出满足条件的平面区域,求出角点的坐标,结合z′=$\frac{y-2}{x+1}$的几何意义求出z的范围即可.

解答 解:画出满足条件的平面区域,如图示:

∵$z=\frac{x+1}{x+2y-3}$,∴$\frac{1}{z}$=$\frac{x+2y-3}{x+1}$=1+$\frac{2(y-2)}{x+1}$,
令z′=$\frac{y-2}{x+1}$,z′的几何意义表示平面区域内的点和(-1,2)点的直线的斜率,
由$\left\{\begin{array}{l}{2x+y+5=0}\\{x-y+1=0}\end{array}\right.$,解得A(-2,-1),
故KAD=$\frac{2+1}{-1+2}$=3,KCD=-1,
∴-1≤$\frac{1}{z}$≤7,
故-1≤z<0或0<z≤$\frac{1}{7}$,
故选:C.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在正方体ABCD-A1B1C1D1中,E,F分别是棱A1B1,B1C1的中点,O是AC与BD的交点,面OEF与面BCC1B1相交于m,面OD1E与面BCC1B1相交于n,则直线m,n的夹角为(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)是定义域在R的可导函数,满足:f(x)<f′(x)且f(0)=2,则$\frac{f(x)}{{e}^{x}}$>2的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=(x-a)2+4ln(x+1)的图象在点(1,f(1))处的切线与y轴垂直.
(1)求实数a的值;             
(2)求出f(x)的所有极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三角形ABC的边长为a,那么它的平面直观图的面积为$\frac{\sqrt{6}}{16}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线的倾斜角为$α∈(\frac{π}{3},\frac{5π}{6})$,则斜率k∈(-∞,-$\frac{\sqrt{3}}{3}$)∪($\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右焦点$F(\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程.
(2)过F且倾斜角为45°的直线l与椭圆交于不同的两点M,N,求△OMN(O为坐标原点)的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}(n=1,2,3,…)是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn
(1)若{an}满足a1=3,当n≥2时,${a_n}={3^n}-1$,写出d1,d2,d3的值;
(2)设d是非负整数,证明:dn=-d的充分必要条件为{an}是公差为d的等差数列;
(3)若{an}的通项公式为${a_n}={2^n}$,求数列$\left\{{-\frac{n^2}{d_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某实体公司老板给员工两个加薪的方案:①每年年末加1000元;②每半年结束时加300元.
(Ⅰ)若在该公司干10年,问两种方案在10年内可分别获得加薪工资共多少元?
(Ⅱ)如果由你选择,你会选择其中的哪一种加薪方案比较合算?

查看答案和解析>>

同步练习册答案