精英家教网 > 高中数学 > 题目详情
17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右焦点$F(\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程.
(2)过F且倾斜角为45°的直线l与椭圆交于不同的两点M,N,求△OMN(O为坐标原点)的面积.

分析 (1)由椭圆右焦点$F(\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$,列出方程组求出a,b,由此能求出椭圆C的方程.
(2)设直线MN的方程为:$y=x-\sqrt{3}$,联立方程组$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,得:$5{x^2}-8\sqrt{3}x+8=0$,由此利用韦达定理、弦长公式、点到直线的距离公式,能求出△OMN(O为坐标原点)的面积.

解答 解:(1)∵椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右焦点$F(\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$,
∴由题意可知$\left\{\begin{array}{l}c=\sqrt{3}\\ e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}\\{a^2}={b^2}+{c^2}\end{array}\right.$,…(2分)
解得a=2,b=1…(5分)
∴椭圆C的方程为$\frac{x^2}{4}+{y^2}=1$.…(6分)
(2)由已知可设直线MN的方程为:$y=x-\sqrt{3}$…(7分)
联立方程组$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$
消去y得:$5{x^2}-8\sqrt{3}x+8=0$…(8分)
设M(x1,y1),N(x2,y2),则$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{8\sqrt{3}}}{5}\\{x_1}{x_2}=\frac{8}{5}\end{array}\right.$…(9分)
∴$|{MN}|=\sqrt{1+{1^2}}•\sqrt{({x_1}+{x_2})-4{x_1}{x_2}}$=$\sqrt{2}•\sqrt{{{(\frac{{8\sqrt{3}}}{5})}^2}-4×\frac{8}{5}{x_1}{x_2}}$=$\frac{8}{5}$…(10分)
点O到直线MN的距离为:$d=\frac{{|{0-0-\sqrt{3}}|}}{{\sqrt{2}}}=\frac{{\sqrt{6}}}{2}$…(11分)
∴${S_{△OMN}}=\frac{1}{2}|{MN}|•d=\frac{1}{2}×\frac{8}{5}×\frac{{\sqrt{6}}}{2}=\frac{{2\sqrt{6}}}{5}$,
故△OMN(O为坐标原点)的面积为$\frac{{2\sqrt{6}}}{5}$.…12分

点评 本题考查椭圆方程的求法,考查三角形面积的求法,是中档题,解题时要认真审题,注意韦达定理、弦长公式、点到直线的距离公式、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$C:\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),且过点(1,$\frac{3}{2}}$).设点A为椭圆C上一动点,P、Q为椭圆的左、右顶点(点A与P,Q不重合),设直线AP、AQ与直线x=4分别交于M、N两点.
( I)求椭圆C的方程;
( II)试问:以MN为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|-1≤x<2},B={x|x-k≥0},若A∩B≠∅,则k的取值范围是(  )
A.(-∞,2]B.(-∞,2)C.[-1,+∞)D.[-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x,y满足不等式组$\left\{{\begin{array}{l}{2x-y+1≤0}\\{2x+y+5≥0}\\{x-y+1≥0}\end{array}}\right.$,则$z=\frac{x+1}{x+2y-3}$的取值范围为(  )
A.(-∞,-1,]∪[3,+∞)B.$[{-1,\frac{1}{7}}]$C.$[{-1,0})∪({0,\frac{1}{7}}]$D.(-∞,-1]∪[7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式(x+1)(2-x)≤0的解集为(  )
A.{x|-1≤x≤2}B.{x|-1<x<2}C.{x|x≥2或x≤-1}D.{x|x>2或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设i为虚数单位,则复数z=(3-i)(1+3i)的模为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在棱长为2的正方体ABCD-A1B1C1D1内任取一点M,则点M到正方体的中心的距离不大于1的概率为(  )
A.$\frac{π}{18}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax-lnx-4(a∈R).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当a=2时,若存在区间$[{m,n}]⊆[{\frac{1}{2},+∞})$,使f(x)在[m,n]上的值域是$[{\frac{k}{m+1},\frac{k}{n+1}}]$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=2x+1的导数为f′(x),则f′(0)=2.

查看答案和解析>>

同步练习册答案