精英家教网 > 高中数学 > 题目详情
9.在棱长为2的正方体ABCD-A1B1C1D1内任取一点M,则点M到正方体的中心的距离不大于1的概率为(  )
A.$\frac{π}{18}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{π}{3}$

分析 本题是几何概型问题,满足条件的点M在以正方体的中心为球心,球半径为1的球内,求出其体积,再根据几何概型概率公式结合正方体的体积的方法求解即可.

解答 解:满足条件的点M在以正方体的中心为球心,球半径为1的球内,
则所求的概率$P=\frac{{\frac{4}{3}π•{1^3}}}{2^3}=\frac{π}{6}$,
故选C.

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x|x-a|+2x.
(1)当a=3时,方程f(x)=m的解的个数;
(2)对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方,求a的取值范围;
(3)f(x)在(-4,2)上单调递增,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三角形ABC的边长为a,那么它的平面直观图的面积为$\frac{\sqrt{6}}{16}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右焦点$F(\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程.
(2)过F且倾斜角为45°的直线l与椭圆交于不同的两点M,N,求△OMN(O为坐标原点)的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2-ax-alnx(a∈R),g(x)=-x3+$\frac{5}{2}$x2+2x-6,g(x)在[1,4]上的最大值为b,当x∈[1,+∞)时,f(x)≥b恒成立,则a的取值范围(  )
A.a≤2B.a≤1C.a≤-1D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}(n=1,2,3,…)是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn
(1)若{an}满足a1=3,当n≥2时,${a_n}={3^n}-1$,写出d1,d2,d3的值;
(2)设d是非负整数,证明:dn=-d的充分必要条件为{an}是公差为d的等差数列;
(3)若{an}的通项公式为${a_n}={2^n}$,求数列$\left\{{-\frac{n^2}{d_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.读如图的程序,若输入x=-2,则输出y=(  )
A.4B.0C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知锐角三角形ABC中的内角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(2sinB,$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求函数f(x)=sin2xcosB-cos2xsinB的最小正周期及单调递增区间.
(2)若b=4,求三角形ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=cos2x-2sinx+3的值域为[1,5].

查看答案和解析>>

同步练习册答案