精英家教网 > 高中数学 > 题目详情
11.已知椭圆$C:\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F(1,0),且过点(1,$\frac{3}{2}}$).设点A为椭圆C上一动点,P、Q为椭圆的左、右顶点(点A与P,Q不重合),设直线AP、AQ与直线x=4分别交于M、N两点.
( I)求椭圆C的方程;
( II)试问:以MN为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,说明理由.

分析 ( I)由题意可知:F(1,0),F'(-1,0),根据椭圆的定义,$2a=\sqrt{{{({1-1})}^2}+{{({\frac{3}{2}})}^2}}+\sqrt{{{({1+1})}^2}+{{({\frac{3}{2}})}^2}}=4$,求得a和c的值,由b2=a2-c2,求得椭圆的方程;
( II)由题意可知设直线AP、AQ的斜率分别为k1,k2,求得直线AP、AQ的方程,由k1•k2=-$\frac{3}{4}$,由$\left\{{\begin{array}{l}{y={k_1}({x+2})}\\{x=4}\end{array}}\right.$,得M(4,6k1),同理可得N(4,2k2),根据$\overrightarrow{TM}•\overrightarrow{TN}=0$,代入即可求得T点坐标.

解答 解:(I)∵椭圆C右焦点为F(1,0),故左焦点为F'(-1,0),
∴点$({1,\frac{3}{2}})$到两焦点的距离之和为$2a=\sqrt{{{({1-1})}^2}+{{({\frac{3}{2}})}^2}}+\sqrt{{{({1+1})}^2}+{{({\frac{3}{2}})}^2}}=4$…(1分)
∴a=2,c=1得$b=\sqrt{3}$,
故所求的椭圆的方程为$C:\frac{x^2}{4}+\frac{y^2}{3}=1$…(3分)
( II)由对称性知,若定点存在,则必在x轴上,设T(x0,0).…(4分)
由椭圆方程知P(-2,0),Q(2,0).
设A(x1,y1),直线AP、AQ的斜率分别为k1,k2
则直线AP、AQ的方程分别为y=k1(x+2)和y=k2(x-2)…(5分),
${k_1}•{k_2}=\frac{y_1}{{{x_1}+2}}•\frac{y_1}{{{x_1}-2}}=\frac{y_1^2}{x_1^2-4}=\frac{{3({1-\frac{x_1^2}{4}})}}{x_1^2-4}=-\frac{3}{4}$…(7分)
由$\left\{{\begin{array}{l}{y={k_1}({x+2})}\\{x=4}\end{array}}\right.$,得M(4,6k1),同理可得N(4,2k2)…(9分)
则若T(x0,0)在以MN为直径的圆周上,则$\overrightarrow{TM}•\overrightarrow{TN}=0$,
即(4-x0,6k1)•(4-x0,2k2)=0…(10分)
化得${({4-{x_0}})^2}+12{k_1}{k_2}=0$,
又因为${k_1}{k_2}=-\frac{3}{4}$,解得x0=1或x0=7…(11分)
∴以MN为直径的圆过定点T(1,0)和T'(7,0).…(12分)

点评 本题考查利用待定系数法求曲线的轨迹方程,考查了直线与圆锥曲线位置关系的应用,考查了恒过定点问题的求解方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列能构成集合的是(  )
A.中央电视台著名节目主持人B.我市跑得快的汽车
C.赣州市所有的中学生D.赣州的高楼

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将三项式(x2+x+1)n展开,当n=1,2,3,…时,得到如下左图所示的展开式,如图所示的广义杨辉三角形:(x2+x+1)0=1第0行                                                              1
(x2+x+1)1=x2+x+1第1行                                                     1 1 1
(x2+x+1)2=x4+2x3+3x2+2x+1第2行                                     1 2 3 2 1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1第3行                          1 3 6 7 6 3 1
(x2+x+1)4=x8+4x7+10x6+16x5+19x4+16x3+10x2+4x+1第4行   1 4 10 16 19 16 10 4 1

观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x8项的系数为75,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正方体ABCD-A1B1C1D1中,E,F分别是棱A1B1,B1C1的中点,O是AC与BD的交点,面OEF与面BCC1B1相交于m,面OD1E与面BCC1B1相交于n,则直线m,n的夹角为(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过点(3,2$\sqrt{3}$)的直线与圆x2+y2-2x-3=0相切,且与直线kx+y+1=0垂直,则k的值为0或$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(x2+3x+2)5的展开式中x的系数是240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x|x-a|+2x.
(1)当a=3时,方程f(x)=m的解的个数;
(2)对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方,求a的取值范围;
(3)f(x)在(-4,2)上单调递增,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)是定义域在R的可导函数,满足:f(x)<f′(x)且f(0)=2,则$\frac{f(x)}{{e}^{x}}$>2的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右焦点$F(\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程.
(2)过F且倾斜角为45°的直线l与椭圆交于不同的两点M,N,求△OMN(O为坐标原点)的面积.

查看答案和解析>>

同步练习册答案