精英家教网 > 高中数学 > 题目详情
10.直线的倾斜角为$α∈(\frac{π}{3},\frac{5π}{6})$,则斜率k∈(-∞,-$\frac{\sqrt{3}}{3}$)∪($\sqrt{3}$,+∞).

分析 根据角的范围集合三角函数的性质求出斜率k的范围即可.

解答 解:直线的倾斜角为$α∈(\frac{π}{3},\frac{5π}{6})$,
而tan$\frac{π}{3}$=$\sqrt{3}$,tan$\frac{5π}{6}$=-tan$\frac{π}{6}$=-$\frac{\sqrt{3}}{3}$,
故k>$\sqrt{3}$或k<-$\frac{\sqrt{3}}{3}$,
故答案为:(-∞,-$\frac{\sqrt{3}}{3}$)∪($\sqrt{3}$,+∞).

点评 本题考查了求直线的斜率问题,考查三角函数求值问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列结论错误的是(  )
A.命题“若p,则q”与命题“若非q,则非p”互为逆否命题
B.命题“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
C.“若f′(x)=0,则x为y=f(x)的极值点”为真命题
D.“am2<bm2”是“a<b”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式x(x+3)≥0的解集是(  )
A.{x|-3≤x≤0}B.{x|x≥0或x≤-3}C.{x|0≤x≤3}D.{x|x≥3或x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD的底面为矩形,PA=AD=1,AB=2,且PA⊥平面ABCD,E,F分别为AB,PC的中点.
(Ⅰ)求证:EF⊥平面PCD;
(Ⅱ)求二面角C-PD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x,y满足不等式组$\left\{{\begin{array}{l}{2x-y+1≤0}\\{2x+y+5≥0}\\{x-y+1≥0}\end{array}}\right.$,则$z=\frac{x+1}{x+2y-3}$的取值范围为(  )
A.(-∞,-1,]∪[3,+∞)B.$[{-1,\frac{1}{7}}]$C.$[{-1,0})∪({0,\frac{1}{7}}]$D.(-∞,-1]∪[7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线y=x-k与抛物线x2=y相交于A,B两点,若线段AB中点的纵坐标为1,则k的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{4}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设i为虚数单位,则复数z=(3-i)(1+3i)的模为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=lnx+\frac{a}{2}{x^2}-(a+1)x$.
(1)若曲线y=f(x)在x=1处的切线方程为y=-2,求f(x)的单调区间;
(2)若x>0时,$\frac{f(x)}{x}<\frac{f'(x)}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,则复数Z=-1+(1-i)2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案