17£®¼×¡¢ÒÒÁ½ÈË×é³É¡°»ðÐǶӡ±²Î¼ÓͶÀºÓÎÏ·£¬Ã¿ÂÖÓÎÏ·Öмס¢ÒÒ¸÷Ͷһ´Î£¬Èç¹ûÁ½È˶¼Í¶ÖУ¬Ôò¡°»ðÐǶӡ±µÃ4·Ö£»Èç¹ûÖ»ÓÐÒ»ÈËͶÖУ¬Ôò¡°»ðÐǶӡ±µÃ2·Ö£»Èç¹ûÁ½È˶¼Ã»Í¶ÖУ¬Ôò¡°»ðÐǶӡ±µÃ0·Ö£®ÒÑÖª¼×ÿ´ÎͶÖеĸÅÂÊΪ$\frac{4}{5}$£¬ÒÒÿ´ÎͶÖеĸÅÂÊΪ$\frac{3}{4}$£»Ã¿ÂÖÓÎÏ·Öмס¢ÒÒͶÖÐÓë·ñ»¥²»Ó°Ï죬¼ÙÉè¡°»ðÐǶӡ±²Î¼ÓÁ½ÂÖÓÎÏ·£¬Çó£º
£¨I£©¡°»ðÐǶӡ±ÖÁÉÙͶÖÐ3¸öÇòµÄ¸ÅÂÊ£»
£¨II£©¡°»ðÐǶӡ±Á½ÂÖÓÎÏ·µÃ·ÖÖ®ºÍXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£®

·ÖÎö £¨I£©·Ö±ð¼ÆËãÖÁÉÙͶ½ø3ÇòËù¶ÔÓ¦µÄ4ÖÐÇé¿öµÄ¸ÅÂÊ£¬ÔÙÏà¼Ó¼´¿É£»
£¨II£©¼ÆËãËùÓпÉÄܵĵ÷ÖÇé¿öµÄ¸ÅÂÊ£¬Áгö·Ö²¼ÁмÆËãÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©ÉèʼþAiΪ¡°¼×µÚi´ÎͶÖС±£¬Ê¼þBiΪ¡°ÒÒµÚi´ÎͶÖС±£¬
¡à$P£¨ÖÁÉÙͶ½ø3Çò£©=P£¨{A_1}{A_2}{B_1}{B_2}£©+P£¨\overline{A_1}{A_2}{B_1}{B_2}£©+P£¨{A_1}\overline{A_2}{B_1}{B_2}£©+P£¨{A_1}{A_2}\overline{B_1}{B_2}£©+P£¨{A_1}{A_2}{B_1}{\overline B_2}£©$=$\frac{4}{5}•\frac{4}{5}•\frac{3}{4}•\frac{3}{4}+2•£¨\frac{1}{5}•\frac{4}{5}•\frac{3}{4}•\frac{3}{4}+\frac{4}{5}•\frac{4}{5}•\frac{1}{4}•\frac{3}{4}£©=\frac{39}{50}$£®
´ð£º¡°»ðÐǶӡ±ÖÁÉÙͶÖÐ3¸öÇòµÄ¸ÅÂÊΪ$\frac{39}{50}$£®
£¨¢ò£©XµÄËùÓпÉÄܵÄȡֵΪ0£¬2£¬4£¬6£¬8£®
$P£¨X=0£©=\frac{1}{4}•\frac{1}{5}•\frac{1}{4}•\frac{1}{5}=\frac{1}{400}$£¬$P£¨X=2£©=2•£¨\frac{3}{4}•\frac{1}{5}•\frac{1}{4}•\frac{1}{5}+\frac{1}{4}•\frac{4}{5}•\frac{1}{4}•\frac{1}{5}£©=\frac{14}{400}=\frac{7}{200}$£¬$P£¨X=4£©=2•£¨\frac{3}{4}•\frac{4}{5}•\frac{1}{4}•\frac{1}{5}+\frac{1}{4}•\frac{4}{5}•\frac{3}{4}•\frac{1}{5}£©+\frac{3}{4}•\frac{1}{5}•\frac{3}{4}•\frac{1}{5}+\frac{1}{4}•\frac{4}{5}•\frac{1}{4}•\frac{4}{5}=\frac{73}{400}$$P£¨X=6£©=2•£¨\frac{3}{4}•\frac{4}{5}•\frac{3}{4}•\frac{1}{5}+\frac{3}{4}•\frac{4}{5}•\frac{1}{4}•\frac{4}{5}£©=\frac{168}{400}=\frac{21}{50}$£¬$P£¨X=8£©=\frac{3}{4}•\frac{4}{5}•\frac{3}{4}•\frac{4}{5}=\frac{144}{400}=\frac{9}{25}$£®
¡àXµÄ·Ö²¼ÁÐΪ

X02468
P$\frac{1}{400}$$\frac{7}{200}$$\frac{73}{400}$$\frac{21}{50}$$\frac{9}{25}$
$EX=0¡Á\frac{1}{400}+2¡Á\frac{14}{400}+4¡Á\frac{73}{400}+6¡Á\frac{168}{400}+8¡Á\frac{144}{400}=\frac{31}{5}$£®

µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʼÆË㣬ÀëÉ¢±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©É裨3x-1£©4=a0+a1x+a2x2+a3x3+a4x4£®
¢ÙÇóa0+a1+a2+a3+a4£»
¢ÚÇóa0+a2+a4£»
¢ÛÇóa1+a2+a3+a4£»
£¨2£©ÇóS=C271+C272+¡­+C2727³ýÒÔ9µÄÓàÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¸´Æ½ÃæÄÚ¸´Êýz=£¨m2-8m+15£©+£¨m2-5m-14£©i£¬
£¨1£©Èô¸´ÊýzÊÇ´¿ÐéÊý£¬ÇómµÄÖµ£»
£¨2£©ÈôÔÚ¸´Æ½ÃæÄÚ¸´Êýz¶ÔÓ¦µÄµãλÓÚµÚËÄÏóÏÞ£¬ÇómµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨1£©Çóº¯Êýy=$\frac{\sqrt{3-x}}{x-1}$µÄ¶¨ÒåÓò£»
£¨2£©Çóº¯Êýy=-x2+4x-2£¨1¡Üx¡Ü4£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÈôÔ²C£ºx2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0ÉÏÓÐËĸö²»Í¬µÄµãµ½Ö±Ïßl£ºx-y+c=0µÄ¾àÀëΪ2£¬ÔòcµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-2£¬2]B£®[-2$\sqrt{2}$£¬2$\sqrt{2}$]C£®£¨-2£¬2£©D£®£¨-2$\sqrt{2}$£¬2$\sqrt{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®½«ÈýÏîʽ£¨x2+x+1£©nÕ¹¿ª£¬µ±n=1£¬2£¬3£¬¡­Ê±£¬µÃµ½ÈçÏÂ×óͼËùʾµÄÕ¹¿ªÊ½£¬ÈçͼËùʾµÄ¹ãÒåÑî»ÔÈý½ÇÐΣº£¨x2+x+1£©0=1µÚ0ÐР                                                             1
£¨x2+x+1£©1=x2+x+1µÚ1ÐР                                                    1 1 1
£¨x2+x+1£©2=x4+2x3+3x2+2x+1µÚ2ÐР                                    1 2 3 2 1
£¨x2+x+1£©3=x6+3x5+6x4+7x3+6x2+3x+1µÚ3ÐР                         1 3 6 7 6 3 1
£¨x2+x+1£©4=x8+4x7+10x6+16x5+19x4+16x3+10x2+4x+1µÚ4ÐР  1 4 10 16 19 16 10 4 1
¡­
¹Û²ì¶àÏîʽϵÊýÖ®¼äµÄ¹ØÏµ£¬¿ÉÒÔ·ÂÕÕÑî»ÔÈý½Ç¹¹ÔìÈçͼËùʾµÄ¹ãÒåÑî»ÔÈý½ÇÐΣ¬Æä¹¹Ôì·½·¨£ºµÚ0ÐÐΪ1£¬ÒÔϸ÷ÐÐÿ¸öÊýÊÇËüÍ·ÉÏÓë×óÓÒÁ½¼çÉÏ3Êý£¨²»×ã3ÊýµÄ£¬È±ÉÙµÄÊý¼ÆÎª0£©Ö®ºÍ£¬µÚkÐй²ÓÐ2k+1¸öÊý£®ÈôÔÚ£¨1+ax£©£¨x2+x+1£©5µÄÕ¹¿ªÊ½ÖУ¬x8ÏîµÄϵÊýΪ75£¬ÔòʵÊýaµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®iÊÇÐéÊýµ¥Î»£¬Ôò$\frac{1}{1+i}$=£¨¡¡¡¡£©
A£®$\frac{1-i}{2}$B£®-$\frac{1+i}{2}$C£®$\frac{1+i}{2}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¹ýµã£¨3£¬2$\sqrt{3}$£©µÄÖ±ÏßÓëÔ²x2+y2-2x-3=0ÏàÇУ¬ÇÒÓëÖ±Ïßkx+y+1=0´¹Ö±£¬ÔòkµÄֵΪ0»ò$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁв»µÈʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®Èô|a|£¼b£¬Ôòa2£¾b2B£®Èô|a|£¾b£¬Ôòa2£¾b2C£®Èôa£¾b£¬Ôòa2£¾b2D£®Èôa£¾|b|£¬Ôòa2£¾b2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸