精英家教网 > 高中数学 > 题目详情
16.已知双曲线$\frac{x^2}{a^2}\;-\;\frac{y^2}{b^2}\;=\;1\;({a>0,b>0})$与圆${x^2}+{y^2}\;={c^2}\;({c\;=\sqrt{{a^2}+{b^2}}})$交于A、B、C、D四点,若四边形ABCD是正方形,则双曲线的离心率是(  )
A.$\sqrt{2+\sqrt{2}}$B.$\sqrt{2+2\sqrt{2}}$C.$\sqrt{1+\sqrt{2}}$D.$\sqrt{1+2\sqrt{2}}$

分析 联立双曲线方程和圆方程,求得交点,由于四边形ABCD是正方形,则有x2=y2,运用双曲线的a,b,c的关系和离心率公式,即可得到结论.

解答 解:联立双曲线方程$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$和圆x2+y2=c2
解得,x2=c2-$\frac{{b}^{4}}{{c}^{2}}$,y2=$\frac{{b}^{4}}{{c}^{2}}$,
由于四边形ABCD是正方形,
则有x2=y2,即为c2-$\frac{{b}^{4}}{{c}^{2}}$=$\frac{{b}^{4}}{{c}^{2}}$,
即c4=2b4,即c2=$\sqrt{2}$b2=$\sqrt{2}$(c2-a2),
则e=$\frac{c}{a}$=$\sqrt{\frac{\sqrt{2}}{\sqrt{2}-1}}$=$\sqrt{2+\sqrt{2}}$.
故选:A.

点评 本题考查双曲线方程和性质,考查联立双曲线方程和圆的方程求解交点,考查离心率的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,已知矩形ABCD是圆柱O1O2的轴截面,N在上底面的圆周O2上,AC、BD相交于点M;
(1)求证:CN⊥平面ADN;
(2)已知圆锥MO1和圆锥MO2的侧面展开图恰好拼成一个半径为2的圆,直线BC与平面CAN所成角的正切值为$\frac{{\sqrt{3}}}{6}$,求异面直线AB与DN所成角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{4-x}+{log_3}$(x-2)的定义域为集合A,函数$g(x)={log_2}x,(\frac{1}{4}≤x≤8)$的值域为集合B.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a-1},且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$y=sin\frac{aπ}{2}x(a>0)$在区间(0,1)内至少取得两次最小值,且至多取得三次最大值,则a的取值范围是(7,13].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若关于x的方程25-|x+1|-4•5-|x+1|-m=0有实根,求m的取值范围.
变题1:设有两个命题:①关于x的方程9x+(4+a)•3x+4=0有解;②函数$f(x)={log_{2{a^2}-a}}x$是减函数.当①与②至少有一个真命题时,实数a的取值范围是$({-∞,-8}]∪({-\frac{1}{2},0})∪({\frac{1}{2},1})$
变题2:方程x2-2ax+4=0的两根均大于1,则实数a的取值范围是$[{2,\frac{5}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设命题A和命题B都含有同一个变量m,其中命题A成立时求得变量m的范围为集合P,命题B成立时求得变量m的范围为集合Q.如果要求“命题A成立是命题B成立的必要非充分条件”时,则集合P和集合Q的关系为Q?P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-x+k,且满足log2f(a)=2,f(log2a)=k(a≠1).
(1)求log2f(x)的最小值及对应的x的值;
(2)x为何值时,f(log2x)>f(1)且log2f(x)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用数学归纳法证明斐波拉契数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,点A(3$\sqrt{2}$,$\frac{π}{4}$),曲线C:p2=2pcosθ+1.
(1)写出点A的直角坐标及曲线C的直角坐标方程,并指出曲线C的类型;
(2)若点B是曲线C上的动点,直线l的参数方程是$\left\{\begin{array}{l}{x=-3+t}\\{y=t}\end{array}\right.$(t是参数),求线段AB的中点D到直线l距离的最大值.

查看答案和解析>>

同步练习册答案