| A. | 2 | B. | 4 | C. | $3+\sqrt{5}$ | D. | $3+2\sqrt{2}$ |
分析 画出可行域,利用目标函数去最小值得到a,b的等式,$\frac{1}{a}$+$\frac{1}{b}$的最小值
解答 解:约束条件对应的 区域如图:
目标函数z=ax+by(a>0,b>0)经过C时取最小值为2,所以a+b=2,则$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{2}$($\frac{1}{a}$+$\frac{1}{b}$)(a+b)=$\frac{1}{2}$(2+$\frac{a}{b}+\frac{b}{a}$)≥2;
当且仅当a=b时等号成立;
故选A.
点评 本题考查了简单线性规划问题和基本不等式的应用求最值;关键是求出a+b=2,对所求变形为基本不等式的形式求最小值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e30 | B. | e${\;}^{\frac{100}{3}}$ | C. | e${\;}^{\frac{110}{3}}$ | D. | e40 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>a>b | C. | b>c>a | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(2,+∞) | B. | (-2,1) | C. | (-1,2) | D. | (-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com