精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,若f(2-x2)>f(x),则x的取值范围是(  )
A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(-1,2)D.(-∞,-2)∪(1,+∞)

分析 根据分段函数的定义域不同,函数f(x)不同,分析函数的单调性,由题意可得函数f(x)在R上是单调性增函数,利用单调性转化为不等式问题求解.

解答 解:函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,
当x≤0时,函数f(x)=-x2,在x≤0上是增函数,
当x>0时,函数f(x)=lg(x+1),在x>0上是增函数,
在函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$在R上是单调递增.
又f(2-x2)>f(x),
∴x<2-x2
解得-2<x<1.
故选B.

点评 本题主要考查了函数的单调性和不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.定义在(0,+∞)上的函数f(x)满足下面三个条件:
①对任意正数a,b,都有f(a)+f(b)=f(ab);
②当x>1时,f(x)<0;
③f(2)=-1
(I)求f(1)和f($\frac{1}{4}$)的值;
(II)试用单调性定义证明:函数f(x)在(0,+∞)上是减函数;
(III)求满足f(3x2-x)>2的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直三棱柱ABC-A1B1C1的各顶点都在同一球面上BC=$\sqrt{3}$,AA1=2,∠BAC=120°,则此球的表面积等于20π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设F1和F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若F1、F2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤6\\ x-3y≤-2\\ x≥1\end{array}\right.$,则目标函数z=ax+by(a>0,b>0)的最小值为2,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.2B.4C.$3+\sqrt{5}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,透明塑料制成的长方体容器A1B1C1D1-ABCD内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面五个命题,真命题的有(1)(3)(4)(5).
(1)没有水的部分始终呈棱柱形;
(2)水面EFGH所在四边形的面积为定值;
(3)棱A1D1始终与水面所在平面平行;
(4)当容器任意倾斜时,水面可以是六边形;
(5)当容器任意倾斜时,水面可以是五边形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若b>a>3,f(x)=$\frac{lnx}{x}$,则下列各结论正确的是(  )
A.f(a)<f($\sqrt{ab}$)<f($\frac{a+b}{2}$)B.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(b)C.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(a)D.f(a)>f($\sqrt{ab}$)>f($\frac{a+b}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),点M(1,$\frac{3}{2}$)在椭圆C上,则椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(ax+1)+$\frac{1-x}{1+x}({x≥0})$,其中a>0.
(Ⅰ)若a=1,求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为1,求a的取值范围.

查看答案和解析>>

同步练习册答案