| A. | (-∞,-1)∪(2,+∞) | B. | (-2,1) | C. | (-1,2) | D. | (-∞,-2)∪(1,+∞) |
分析 根据分段函数的定义域不同,函数f(x)不同,分析函数的单调性,由题意可得函数f(x)在R上是单调性增函数,利用单调性转化为不等式问题求解.
解答 解:函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,
当x≤0时,函数f(x)=-x2,在x≤0上是增函数,
当x>0时,函数f(x)=lg(x+1),在x>0上是增函数,
在函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$在R上是单调递增.
又f(2-x2)>f(x),
∴x<2-x2
解得-2<x<1.
故选B.
点评 本题主要考查了函数的单调性和不等式的解法,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $3+\sqrt{5}$ | D. | $3+2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)<f($\sqrt{ab}$)<f($\frac{a+b}{2}$) | B. | f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(b) | C. | f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(a) | D. | f(a)>f($\sqrt{ab}$)>f($\frac{a+b}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com