分析 (Ⅰ)求出函数的导数,解关于导函数的方程,求出函数的单调区间即可;
(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出a的范围即可.
解答 解:定义域为[0,+∞).$f'(x)=\frac{a}{ax+1}-\frac{2}{{{{(1+x)}^2}}}=\frac{{a{x^2}+a-2}}{{(ax+1){{(1+x)}^2}}}$.
(Ⅰ)若a=1,则$f'(x)=\frac{{{x^2}-1}}{{(x+1){{(1+x)}^2}}}$,令f'(x)=0,得x=1(舍-1),
| x | (0,1) | 1 | (1,+∞) |
| f'(x) | - | 0 | + |
| f(x) | ↘ | 极小值 | ↗ |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(2,+∞) | B. | (-2,1) | C. | (-1,2) | D. | (-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $3\sqrt{2}$ | C. | $\sqrt{26}$ | D. | $\sqrt{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2[x+$\frac{1}{2}}$]+4 | B. | y=2[x+$\frac{1}{2}}$]+5 | C. | y=2[x-$\frac{1}{2}}$]+4 | D. | y=2[x-$\frac{1}{2}}$]+5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com