精英家教网 > 高中数学 > 题目详情
20.重庆市乘坐出租车的收费办法如下:
(1)不超过3千米的里程收费10元
(2)超过3千米的里程2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费),当车程超过3千米时,另收燃油附加费1元.
相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,用[x]表示不大于x的最大整数,则图中①处应填(  )
A.y=2[x+$\frac{1}{2}}$]+4B.y=2[x+$\frac{1}{2}}$]+5C.y=2[x-$\frac{1}{2}}$]+4D.y=2[x-$\frac{1}{2}}$]+5

分析 根据已知中的收费标准,求当x>3时,所收费用y的表达式,化简可得答案.

解答 解:由已知中,超过3千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);
当车程超过3千米时,另收燃油附加费1元.
可得:当x>3时,所收费用y=10+[x-3+$\frac{1}{2}$]×2+1=2[x+$\frac{1}{2}$]+5,
故选:B.

点评 本题考查的知识点是分段函数的应用,函数模型的选择与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(ax+1)+$\frac{1-x}{1+x}({x≥0})$,其中a>0.
(Ⅰ)若a=1,求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下六个关系式:①0∈{0},②{0}?∅,③0.3∉Q,④0∈N,⑤{a,b}⊆{b,a},⑥{x|x2-2=0,x∈Z}是空集,其中错误的个数是(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左、右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=$\frac{8}{15}$|F1F2|,则△PF1F2的面积等于(  )
A.$\frac{80}{3}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.5B.$\sqrt{5}$C.4$\sqrt{2}$D.$\sqrt{31}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.顶点在x轴上,两顶点间的距离为8,离心率e=$\frac{5}{4}$的双曲线为(  )
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{25}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,a=3,b=$\sqrt{6}$,A=$\frac{π}{3}$,则B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.围建一个面积为300m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙足够长,利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为75元/m,新墙的造价为150元/m,设利用的旧墙的长度为xm(x>0).
(1)将总费用y元表示为xm的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平行四边形ABCD的顶点A为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的中心,顶点B为双曲线的右焦点,顶点C在y轴正半轴上,顶点D恰好在该双曲线左支上,若∠ABC=45°,则此双曲线的离心率是(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}+3}}{2}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案