精英家教网 > 高中数学 > 题目详情
3.定义在(0,+∞)上的函数f(x)满足下面三个条件:
①对任意正数a,b,都有f(a)+f(b)=f(ab);
②当x>1时,f(x)<0;
③f(2)=-1
(I)求f(1)和f($\frac{1}{4}$)的值;
(II)试用单调性定义证明:函数f(x)在(0,+∞)上是减函数;
(III)求满足f(3x2-x)>2的x的取值集合.

分析 (I)对任意正数a,b,都有f(a)+f(b)=f(ab);f(2)=-1,令a=1,b=2,可得f(1)的值,令a=b=2,可得f(4)的值,令a=4,b=$\frac{1}{4}$可得f($\frac{1}{4}$)的值,
(II)利用定义法直接证明;
(III)利用(I)(II)得到的性质和结论,转化为不等式求解.

解答 解:(I)由题意:对任意正数a,b,都有f(a)+f(b)=f(ab);
令a=1,b=2,可得f(1)+f(2)=f(2);
解得:f(1)=0,
令a=2,b=2,可得f(2)+f(2)=f(4)
解得:f(4)=-2,
再令a=4,b=$\frac{1}{4}$可得f(4)+f($\frac{1}{4}$)=f(1)
解得:f($\frac{1}{4}$)=2.
(II)利用定义证明:设x1<x2,x1、x2∈(0,+∞),
∵$f({x}_{1})+f(\frac{{x}_{2}}{{x}_{1}})=f({x}_{2})$
则f(x2)-f(x1)=$f(\frac{{x}_{2}}{{x}_{1}})$,
由$\frac{{x}_{2}}{{x}_{1}}>1$,当x>1时,f(x)<0;
∴f($\frac{{x}_{2}}{{x}_{1}}$)<0,即f(x2)-f(x1)<0,
∴函数f(x)在(0,+∞)上是减函数;
(III)由(I)得知f($\frac{1}{4}$)=2,
∴不等式f(3x2-x)>2转化为f(3x2-x)>f($\frac{1}{4}$)
由(II)函数f(x)在(0,+∞)上是减函数;
∴$\left\{\begin{array}{l}{3{x}^{2}-x>0}\\{3{x}^{2}-x<\frac{1}{4}}\end{array}\right.$,
解得:-6<x<0或$\frac{1}{3}<x<\frac{1}{2}$.
故得f(3x2-x)>2的解集为:(-6,0)∪($\frac{1}{3}$,$\frac{1}{2}$).

点评 本题考查了抽象函数的性质及其运用能力,单调性的证明和求解不等式的问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2016)2f(x+2016)-4f(-2)>0的解集为(  )
A.(-∞,-2016)B.(-∞,-2018)C.(-2018,0)D.(-2016,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上的函数f(x),对于任意的实数x,y,都有f(xy)=f(x)+f(y),则f(1)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线l经过点(a-2,-1)和(-a-2,1),且与经过点(-2,1)斜率为-$\frac{2}{3}$的直线垂直,则实数a的值为(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在正方体ABCD-A1B1C1D1中,E是B1D1的中点.求证:
(1)平面A1BD∥平面D1B1C;
(2)平面D1B1C⊥平面C1EC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}满足a1=5,$\frac{1}{{{a_{n+1}}}}$-$\frac{1}{a_n}$=5(n∈N+),则an=$\frac{5}{25n-24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是三角形ABC的重心,则$\overrightarrow{OG}$=(  )
A.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{4}$$\overrightarrow{OC}$B.$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$C.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$D.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,由三条曲线θ=0,θ=$\frac{π}{3}$,ρcosθ+$\sqrt{3}$ρsinθ=1围成的图形的面积是(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{8}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,若f(2-x2)>f(x),则x的取值范围是(  )
A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(-1,2)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

同步练习册答案