| A. | (-∞,-2016) | B. | (-∞,-2018) | C. | (-2018,0) | D. | (-2016,0) |
分析 根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论
解答 解:由2f(x)+xf′(x)>x2,(x<0),
得:2xf(x)+x2f′(x)<x3,
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
则当x<0时,
得F′(x)<0,即F(x)在(-∞,0)上是减函数,
F(x+2016)=(x+2016)f(x+2014),F(-2)=(-2)f(-2),
F(x+2016)-F(-2)>0,
∵F(x)在(-∞,0)是减函数,
∴由F(x+2014)>F(-2)得,
∴x+2016<-2,
即x<-2018.
故选B.
点评 本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{9}$ | B. | $\frac{3}{7}$ | C. | $\frac{5}{6}$ | D. | -$\frac{2}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | 1 | C. | ±2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com