分析 (1)由题意可知:A={x|x≤-3或x>1},B={x|-1≤x≤2},由集合的运算可知A∩B={x|1<x≤2};
(2)B∪C=C,则B⊆C,因此a2-2≤-1,即可求得实数a的取值范围.
解答 解:(1)由题意知,|$\frac{x+3}{x-1}$≥0,即$\left\{\begin{array}{l}{(x+3)(x-1)≥0}\\{x-1≠0}\end{array}\right.$,解得:x≤-3或x>1,
∴A={x|x≤-3或x>1},
由x2-x-2≤0,解得:-1≤x≤2,
∴B={x|-1≤x≤2},
∴A∩B={x|1<x≤2};
(2)∵B∪C=C,
∴B⊆C,
∴a2-2≤-1,解得:-1≤a≤1,
实数a的取值范围[-1,1].
点评 本题考查集合的运算,考查一元二次方程的解法,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | -3$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B⊆∁RA | B. | A⊆∁RB | C. | B⊆A | D. | A⊆B |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-1) | B. | [-3,-1] | C. | (-∞,-3]∪[-1,+∞) | D. | (-∞,-3)∪(-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2016) | B. | (-∞,-2018) | C. | (-2018,0) | D. | (-2016,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com