精英家教网 > 高中数学 > 题目详情

定义F(x,y)=yx(x>0,y>0).
(1)设函数f(n)=数学公式(n∈N*),求函数f(n)的最小值;
(2)设g(x)=F(x,2),正项数列{an}满足;a1=3,g(an+1)=数学公式,求数列{an}的通项公式,并求所有可能乘积aiaj(1≤i≤j≤n)的和.

解:(1)∵F(x,y)=yx(x>0,y>0).
∴f(n)==
==
由于2n2-(n+1)2=(n-1)2-2,
当n≥3时,f(n+1)>f(n); 当n<3时,f(n+1)<f(n),
所以当n=3时,f(n)min=f(3)=;…(6分)
(2)∵g(x)=F(x,2)=2x
∴g(an+1)=
又∵g(an+1)==
所以an+1=3an,而a1=3,所以an=3n;…(9分)
设所求的和为S,
则S=a1•a1+(a1+a2)•a2+…+(a1+a2+…+an)•an…(11分)
=3•31+(3+32)•32+…+(3+32+…+3n)•3n…(12分)
=•31+•32+…+•3n
=
=
=…(14分).
分析:(1)由题意可得f(n)==,要求f(n)的最小值,只要判断f(n)的单调性,利用比较法中的比商:=,只要判断2n2与(n+1)2的大小即可判断
(2)先由 条件可求g(x)=F(x,2)=2x,代入可得g(an+1)=,结合g(an+1)==,可得an+1与an的递推关系,进而可求通项,设所求的和为S,则S=a1•a1+(a1+a2)•a2+…+(a1+a2+…+an)•an利用分组求和的可求
点评:本题主要考查了利用单调性求解函数的最值,及分组求和方法、等比数列的通项公式的应用,属于函数与数列知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对任意x∈A,y∈B,(A、B⊆R)有唯一确定的f(x,y)与之对应,称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出四个二元函数:
①f(x,y)=x2+y2;②f(x,y)=(x-y)2f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能够成为关于的x、y的广义“距离”的函数的所有序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

定义y=log(1+x)F(x,y),x、y∈(0,+∞),
(Ⅰ)令函数f(x)=F(x,2)-3x,过坐标原点O作曲线C:y=f(x)的切线l,切点为P(n,t)(n>0),设曲线C与l及y轴围成图形的面积为S,求S的值.
(Ⅱ)令函数g(x)=F(x,2)+alnx,讨论函数g(x)是否有极值,如果有,说明是极大值还是极小值.
(Ⅲ)证明:当x,y∈N*且x<y时,F(x,y)>F(y,x).

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足对?x,t∈R,且t≠0,都有t(f(x+t)-f(x))>0,则{(x,y)|y=f(x)}∩{(x,y)|y=a}的元素个数为
0或1
0或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南汇区二模)已知动直线y=kx交圆(x-2)2+y2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足
OM
=
AB
,动点M的轨迹C的方程为F(x,y)=0.
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意x∈A,y∈B,(A、B?R)有唯一确定的f(x,y)与之对应,称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出四个二元函数:①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能够成为关于的x、y的广义“距离”的函数的所有序号是(  )
A、①B、②C、③D、④

查看答案和解析>>

同步练习册答案