精英家教网 > 高中数学 > 题目详情

如图,四棱锥中,底面是边长为1的正方形,平面的中点,在棱上.

(1)求证:
(2)求三棱锥的体积.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以四棱锥为几何背景考查线线平行、线线垂直、线面垂直、线面平行、面面垂直以及三棱锥的体积等基础知识,考查学生的空间想象能力和逻辑推理能力.第一问,在中,都是中点,所以,利用面面垂直的判定可以判断平面平面,因为垂直2个面的交线,所以垂直平面,即平面,因为垂直,所以利用线面垂直的判定得平面,所以面内的线;第二问,将所求三棱锥进行等体积转换,法一是利用,法二是利用,进行求解.
试题解析:(Ⅰ)连接
的中点,
因为平面平面
所以平面平面
且平面平面平面
所以平面,      4分
,又平面平面,
所以.       6分

(Ⅱ)由(Ⅰ)知平面,所以平面
平面,所以即为点与平面的距离,,而,      10分
      12分
解法二
(Ⅱ)由(Ⅰ)知平面,所以平面
所以即为点与平面的距离
.
考点:1.线面垂直的判定;2.线面平行的判定;3.面面垂直的判定;4.等体积法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.

(1)请画出该几何体的三视图;
(2)求四棱锥B­CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCDABAD,点E在线段AD上,且CEAB.

(1)求证:CE⊥平面PAD
(2)若PAAB=1,AD=3,CD,∠CDA=45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,为线段的中点,.

(Ⅰ)证明:⊥平面
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,截下一个棱锥,求棱锥的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在长方体中,,点的中点,点的中点.

(1)求长方体的体积;
(2)若,求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上).
(1)求此球的体积;
(2)求此球的内接正方体的体积;
(3)求此球的表面积与其内接正方体的全面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的菱形,, 底面,,的中点,的中点.

(Ⅰ)求四棱锥的体积;
(Ⅱ)证明:直线平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在直三棱柱中,的中点.

(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1
(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.

查看答案和解析>>

同步练习册答案