精英家教网 > 高中数学 > 题目详情

在已知ABC的内角的对边若a=csinA则的最大值为(   )

A.             B.1                C.            D.

 

【答案】

D

【解析】

试题分析:根据正弦定理及a=csinA求得C.进而根据勾股定理可知c2=a2+b2,对的平方化简整理

根据基本不等式得到的范围,进而得出答案。解:a=csinA,得到 =sinA.所以sinC=1,即C=90°.所以c2=a2+b2,然后根据均值不等式可知结论分母有最小值为2,整个表达式有最大值为2,那么可知的最大值为,选D

考点:正弦定理

点评:本题主要考查正弦定理和基本不等式在解三角形中的应用

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是
①④⑤
①④⑤
(注:把你认为是正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2–(m+1)x+m(m∈R)

(1)若tanA,tanB是方程f(x)+4=0的两个实根,AB是锐角三角形ABC的两个内角  求证:m≥5;

(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;

(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量数学公式,向量数学公式与向量数学公式夹角为数学公式,且数学公式
(1)若向量数学公式与向量数学公式=(1,0)的夹角为数学公式,向量数学公式,其中A,C为△ABC的内角,且A,B,C依次成等差数列,试求|数学公式+数学公式|的取值范围.
(2)若A、B、C为△ABC的内角,且A,B,C依次成等差数列,A≤B≤C,设f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值为数学公式,关于x的方程数学公式数学公式上有相异实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是______(注:把你认为是正确的序号都填上).

查看答案和解析>>

同步练习册答案