¶¯Ô²C¹ý¶¨µãF(
p
2
£¬0)
£¬ÇÒÓëÖ±Ïßx=-
p
2
ÏàÇУ¬ÆäÖÐp£¾0£®ÉèÔ²ÐÄCµÄ¹ì¼£¦£µÄ³ÌΪF£¨x£¬y£©=0
£¨1£©ÇóF£¨x£¬y£©=0£»
£¨2£©ÇúÏߦ£ÉϵÄÒ»¶¨µãP£¨x0£¬y0£©£¨y0¡Ù0£©£¬·½ÏòÏòÁ¿
d
=(y0£¬-p)
µÄÖ±Ïßl£¨²»¹ýPµã£©ÓëÇúÏߦ£½»ÓëA¡¢BÁ½µã£¬ÉèÖ±ÏßPA¡¢PBбÂÊ·Ö±ðΪkPA£¬kPB£¬¼ÆËãkPA+kPB£»
£¨3£©ÇúÏߦ£ÉϵÄÁ½¸ö¶¨µãP0£¨x0£¬y0£©¡¢Q0(x0¡ä£¬y0¡ä)£¬·Ö±ð¹ýµãP0£¬Q0×÷Çãб½Ç»¥²¹µÄÁ½ÌõÖ±ÏßP0M£¬Q0N·Ö±ðÓëÇúÏߦ£½»ÓÚM£¬NÁ½µã£¬ÇóÖ¤Ö±ÏßMNµÄбÂÊΪ¶¨Öµ£®
£¨1£©¹ýµãC×÷Ö±Ïßx=-
p
2
µÄ´¹Ïߣ¬´¹×ãΪN£¬
ÓÉÌâÒâÖª£º|CF|=|CN|£¬¼´¶¯µãCµ½¶¨µãFÓ붨ֱÏßx=-
p
2
µÄ¾àÀëÏàµÈ£¬
ÓÉÅ×ÎïÏߵ͍ÒåÖª£¬µãCµÄ¹ì¼£ÎªÅ×ÎïÏߣ¬
ÆäÖÐF(
p
2
£¬0)
Ϊ½¹µã£¬x=-
p
2
Ϊ׼Ïߣ¬
ËùÒԹ켣·½³ÌΪy2=2px£¨p£¾0£©£»       
£¨2£©Éè A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©
²»¹ýµãPµÄÖ±Ïßl·½³ÌΪy=-
p
y0
x+b
£¬
ÓÉ
y2=2px
y=-
p
y0
x+b
µÃy2+2y0y-2y0b=0£¬
Ôòy1+y2=-2y0£¬
kAP+kBP=
y1-y0
x1-x0
+
y2-y0
x2-x0

=
y1-y0
y21
2p
-
y20
2p
+
y2-y0
y22
2p
-
y20
2p

=
2p
y1+y0
+
2p
y2+y0

=
2p(y1+y2+2y0)
(y1+y0)(y2+y0)
=0£®
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÔòkMN=
y2-y1
x2-x1
=
y2-y1
y22
2p
-
y21
2p
=
2p
y1+y2
£¨***£©                    
ÉèMP0µÄÖ±Ïß·½³ÌΪΪy-y0=k£¨x-x0£©ÓëÇúÏßy2=2pxµÄ½»µãP0£¨x0£¬y0£©£¬M£¨x1£¬y1£©£®
ÓÉ
y2=2px
y-y0=k(x-x0)
£¬y2-
2p
k
y+
2py0
k
-2px0=0
µÄÁ½¸ùΪy0£¬y1
Ôòy0+y1=
2p
k
£¬¡ày1=
2p
k
-y0

ͬÀíy0¡ä+y2=
2p
-k
£¬µÃy2=-
2p
k
-y0¡ä

¡ày1+y2=-(y0+y0¡ä)£¬
´úÈ루***£©¼ÆËãµÃkMN=-
2p
y0+y0¡ä
£®ÊǶ¨Öµ£¬ÃüÌâµÃÖ¤
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨µãF£¨
p
2
£¬0
£©Ó붨ֱÏßl£ºx=-
p
2
(p¡Ý0)
¶¯Ô²C¾­¹ýµãFÇÒÓëlÏàÇУ®
£¨1£©ÊÔÇó¶¯Ô²Ô²ÐÄCµÄ¹ì¼£EºÍEµÄ¹ì¼£·½³Ì£®
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Èôp¡Ù0£¬¹ýEµÄ½¹µã×÷Ö±Ïßm½»EÓÚA£¬BÁ½µã£¬OΪԭµã£¬Çó¡ÏAOBµÃ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇø¶þÄ££©¶¯Ô²C¹ý¶¨µãF(
p
2
£¬0)
£¬ÇÒÓëÖ±Ïßx=-
p
2
ÏàÇУ¬ÆäÖÐp£¾0£®ÉèÔ²ÐÄCµÄ¹ì¼£¦£µÄ³ÌΪF£¨x£¬y£©=0
£¨1£©ÇóF£¨x£¬y£©=0£»
£¨2£©ÇúÏߦ£ÉϵÄÒ»¶¨µãP£¨x0£¬y0£©£¨y0¡Ù0£©£¬·½ÏòÏòÁ¿
d
=(y0£¬-p)
µÄÖ±Ïßl£¨²»¹ýPµã£©ÓëÇúÏߦ£½»ÓëA¡¢BÁ½µã£¬ÉèÖ±ÏßPA¡¢PBбÂÊ·Ö±ðΪkPA£¬kPB£¬¼ÆËãkPA+kPB£»
£¨3£©ÇúÏߦ£ÉϵÄÁ½¸ö¶¨µãP0£¨x0£¬y0£©¡¢Q0(x0¡ä£¬y0¡ä)£¬·Ö±ð¹ýµãP0£¬Q0×÷Çãб½Ç»¥²¹µÄÁ½ÌõÖ±ÏßP0M£¬Q0N·Ö±ðÓëÇúÏߦ£½»ÓÚM£¬NÁ½µã£¬ÇóÖ¤Ö±ÏßMNµÄбÂÊΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸