精英家教网 > 高中数学 > 题目详情
16.若A={2,4,x3-2x2-x+7},B={1,x+1,x2-2x+2,-$\frac{1}{2}$(x2-3x-8),x3+x2+3x+7},若 A∩B={2,5},求实数x的值.

分析 由已知中A∩B={2,5},可得x3-2x2-x+7=5,解得:x=-1,x=1,x=2,代入讨论排除增根,可得答案.

解答 解:∵A={2,4,x3-2x2-x+7},B={1,x+1,x2-2x+2,-$\frac{1}{2}$(x2-3x-8),x3+x2+3x+7},A∩B={2,5},
∴x3-2x2-x+7=5,
解得:x=-1,x=1,x=2,
当x=-1时,B={1,0,5,2,4},此时A∩B={2,4,5},不满足条件;
当x=1时,x2-2x+2=1,不满足集合元素的互异性,不满足条件;
当x=2时,B={1,3,2,5,25},此时A∩B={2,5},满足条件;
综上可得x=2.

点评 本题考查的知识点是集合的交集运算,分类讨论思想,集合元素的互异性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知an=logn+1(n+2)(n∈N*),定义:使a1•a2…ak为整数的正整数k称为“企盼数”,则[1,2005]内所有企盼数之和为(  )
A.2026B.2025C.2024D.2023

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若3f(x)+2f(-x)=2x,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.命题p:函数f(x)=x2+ax+1能取到一切正值,命题q:函数g(x)=(3-2a)2x-1是其定义域上的增函数,若“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若关于x的不等式x2-mx+m2-4m<0的解集包含区间(0,2)时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x∈(0,1)时,f(x)=loga|x|>0,则 (  )
A.不等式loga|x|<0的解集是(-∞,-1)B.不等式loga|x|>0的解集是(-1,1)
C.当x>1时,loga|x|+log|x|a≥2D.当x<-1时,loga|x|+log|x|a≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)是定义在实数集R上的函数,满足条件y=f(x-1)是奇函数,且当x>-1时,f(x)=2x-1,则f(-2)、f(-$\frac{4}{3}$)、f(-$\frac{1}{3}$)的大小关系是(  )
A.f(-2)<f(-$\frac{4}{3}$)<f(-$\frac{1}{3}$)B.f(-$\frac{1}{3}$)<f(-2)<f(-$\frac{4}{3}$)C.f(-$\frac{4}{3}$)<f(-2)<f(-$\frac{1}{3}$)D.f(-$\frac{4}{3}$)<f(-$\frac{1}{3}$)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f($\frac{x}{y}$)=f(x)-f(y),当x>1时,总有f(x)>0.
(1)求f(1)的值.
(2)判断f(x)的单调性并证明.
(3)若f(4)=6,解不等式f(x-1)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)的定义域为[-2,2],则函数g(x)=$\frac{f(x-1)}{\sqrt{2x+1}}$,则g(x)的定义域为(  )
A.(-$\frac{1}{2}$,3]B.(-1,+∞)C.(-$\frac{1}{2}$,0)∪(0,3)D.(-$\frac{1}{2}$,3)

查看答案和解析>>

同步练习册答案