精英家教网 > 高中数学 > 题目详情
13.若向量$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{0}$,则|$\overrightarrow{AB}$|=$\sqrt{2}$.

分析 设出$\overrightarrow{OB}$的坐标,由已知列式求得$\overrightarrow{OB}$的坐标,可得$\overrightarrow{AB}$的坐标,则$|\overrightarrow{AB}|$可求.

解答 解:设$\overrightarrow{OB}=(x,y)$,
由$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
得$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{y=0}\end{array}\right.$,∴x=±1.
则$\overrightarrow{OB}=(-1,0)$或$\overrightarrow{OB}=(1,0)$,
∴$\overrightarrow{AB}=(-1,1)$或$\overrightarrow{AB}=(1,1)$.
则$|\overrightarrow{AB}|=\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查平面向量的数量积运算,考查了向量垂直的坐标表示,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.二次函数f(x)=x2+2ax+b在区间(-∞,4)上是减函数,你能确定的是(  )
A.a≥2B.b≥2C.a≤-4D.b≤-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0,a1,a2成等差数列.
(1)求(x+2)n展开式的中间项;
(2)求(x+2)n展开式所有含x奇次幂的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,点A在其右半支上,若$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=0,若∠AF1F2∈(0,$\frac{π}{12}$),则该双曲线的离心率e的取值范围为(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow{b}$=(y,2),若向量$\overrightarrow{a}$,$\overrightarrow{b}$同向,则x+y的最小值为(  )
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知M是直线l:x=-1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N
(Ⅰ)求点N的轨迹C的方程
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),直线P′H⊥A′B,垂足为H,是否存在一个定点Q,使得|QH|为定值?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦点坐标为(  )
A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知平面α、β和直线m、n,下列结论正确的是(  )
A.若m⊥α,m⊥n,则n∥αB.若m∥α,n∥α,则m∥n
C.若m?β,且α⊥β,则m⊥αD.若m⊥β,且α∥β,则m⊥α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“对任意x∈R,都有f(x)≤0”的否定是(  )
A.对任意x∈R,都有f(x)>0B.存在x∈R,使f(x)>0
C.存在x∈R,使f(x)≥0D.对任意x∈R,都有f(x)≥0

查看答案和解析>>

同步练习册答案