精英家教网 > 高中数学 > 题目详情

【题目】近期,湖北省武汉市等多个地区发生新型冠状病毒感染的肺炎疫情.为了尽快遏制住疫情,我国科研工作者坚守在科研一线,加班加点争分夺秒与病毒抗争,夜以继日地进行研究.新型冠状病毒的潜伏期检测是疫情控制的关键环节之一.在传染病学中,通常把从致病刺激物侵入机体或对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.钟南山院士带领的研究团队统计了武汉市某地区10000名医学观察者的相关信息,并通过咽拭子核酸检测得到1000名确诊患者的信息如下表格:

潜伏期(单位:天)

人数

800

190

8

2

1)求这1000名确诊患者的潜伏期样本数据的平均数(同一组数据用该组数据区间的中点值代表).

2)新型冠状病毒的潜伏期受诸多因素影响,为了研究潜伏期与患者性别的关系,以潜伏期是否超过7天为标准进行分层抽样,从上述1000名患者中抽取100名,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有90%的把握认为潜伏期与患者性别有关.

潜伏期≤7

潜伏期>7

总计

男性患者

12

女性患者

50

总计

100

3)由于采样不当标本保存不当采用不同类型的标本以及使用不同厂家试剂都可能造成核酸检测结果假阴性而出现漏诊.当核酸检测呈阴性时,需要进一步进行血清学抗体检测,以弥补核酸检测漏诊的缺点.现对10名核酸检测结果呈阴性的人员逐一地进行血清检测,记每个人检测出是近期感染的标志)呈阳性的概率为且相互独立,设至少检测了9个人才检测出呈阳性的概率为,求取得最大值时相应的概率

附:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】14.984天(2)见解析,不能有90%的把握认为潜伏期与患者年龄有关.3

【解析】

1)根据平均数的计算方法,计算出平均数.

2)根据已知条件填写联表,,计算出,由此判断出不能有90%的把握认为潜伏期与患者年龄有关.

3)求得的表达式,利用导数求得取得最大值时的的值.

1

2

潜伏期<7

潜伏期≥7

总计

男性患者

38

12

50

女性患者

42

8

50

总计

80

20

100

的观测值

∴不能有90%的把握认为潜伏期与患者年龄有关.

3)由,化简得

,则

,则

,令解得;令,解得

上单调递增,在上单调递减,

有唯一的极大值为,也是最大值.

∴当时,即时,取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大报告要求,确保到2020年我国现行标准下农村贫困人口实现脱贫,贫困县全部摘帽,解决区域性整体贫困,做到脱真贫、真脱贫.某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领农村地区人民群众脱贫奔小康,扶贫办计划为某农村地区购买农机机器,假设该种机器使用三年后即被淘汰.农机机器制造商对购买该机器的客户推出了两种销售方案:

方案一:每台机器售价7000元,三年内可免费保养2次,超过2次每次收取保养费200元;

方案二:每台机器售价7050元,三年内可免费保养3次,超过3次每次收取保养费100.

扶贫办需要决策在购买机器时应该选取那种方案,为此搜集并整理了50台这种机器在三年使用期内保养的次数,得下表:

保养次数

0

1

2

3

4

5

台数

1

10

19

14

4

2

x表示1台机器在三年使用期内的保养次数.

1)用样本估计总体的思想,求x不超过3”的概率;

2)按照两种销售方案,分别计算这50台机器三年使用期内的总费用(总费用=售价+保养费),以每台每年的平均费用作为决策依据,扶贫办选择那种销售方案购买机器更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,点分别在棱上,且

1)证明:点在平面内;

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019625日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专项规定.某小区采取一系列措施,宣传垃圾分类的知识与意义,并采购分类垃圾箱.为了了解垃圾分类的效果,该小区物业随机抽取了200位居民进行问卷调查,每位居民对小区采取的措施给出“满意”或“不满意”的评价.根据调查结果统计并做出年龄分布条形图和持不满意态度的居民的结构比例图,如图,在这200份问卷中,持满意态度的频率是0.65.

1)完成下面的列联表,并判断能否有的把握认为“51岁及以上”和“50岁及以下”的居民对该小区采取的措施的评价有差异

满意

不满意

总计

51岁及以上的居民

50岁及以下的居民

总计

200

2)按“51岁及以上”和“50岁及以下”的年龄段采取分层抽样的方法从中随机抽取5份,再从这5份调查问卷中随机抽取2份进行电话家访,求电话家访的两位居民恰好一位年龄在51岁及以上,另一位年龄在50岁及以下的概率.

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

附表及参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若在点处的切线为,求的值;

(2)求的单调区间;

(3)若,求证:在时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过抛物线Cy24x的焦点F且与C交于Ax1y1),Bx2y2)两点,则y1y2_____.过AB两点分别作抛物线C的准线的垂线,垂足分别为PQ,准线与x轴的交点为M,四边形FAPM的面积记为S1,四边形FBQM的面积记为S2,则S1S23|AF||BF|_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201913日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M,地月距离为R点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:

.

,由于的值很小,因此在近似计算中,则r的近似值为

A. B.

C. D.

查看答案和解析>>

同步练习册答案