精英家教网 > 高中数学 > 题目详情
f(x)是(0,+∞)上的非负可导函数,且,对任意正数a,b,若a<b,
则(    )
A.B.
C.D.
B

解:xf′(x)+f(x)≤0⇒[xf(x)]′≤0⇒函数F(x)=xf(x)在(0,+∞)上为常函数或递减,
又0<a<b且f(x)非负,于是有:af(a)≥bf(b)≥0①1 /a2>1/ b2>0②
①②两式相乘得:f(a) /a ≥f(b) /b ≥0⇒af(b)≤bf(a),故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知是函数的一个极值点。
(1)求;         (2)求函数的单调区间;
(3)若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分9分)
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题9分)
求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(Ⅰ)判断函数的单调性;
(Ⅱ)是否存在实数、使得关于的不等式在(1,)上恒成立,若存在,求出的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数f(x)=lnx-(a≠0)
(1)若a=3,b=-2,求f(x)在[,e]的最大值;
(2)若b=2,f(x)存在单调递减区间,求a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知为直线为常数)及所围成的图形的面积,为直线为常数)及所围成的图形的面积,(如图)
(1)当时,求的值。
(2)若,求的最小值。
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)已知:函数 ,在区间上有最大值4,最小值1,设函数
(1)求的值及函数的解析式;
(2)若不等式时恒成立,求实数的取值范围;
(3)如果关于的方程有三个相异的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数为常数)在定义域上是增函数,则实数的取值范围是                 

查看答案和解析>>

同步练习册答案