精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=2x2+(2-m)x-m,g(x)=x2-x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求关于x的不等式f(x)≤g(x)的解集.

分析 (1)m=1时求出对应不等式f(x)>0的解集即可;
(2)m>0时,求出不等式f(x)≤g(x)的解集即可.

解答 解:(1)函数f(x)=2x2+(2-m)x-m,
当m=1时,2x2+x-1>0,
解得x>$\frac{1}{2}$或x<-1,
∴不等式f(x)>0的解集是{x|x>$\frac{1}{2}$或x<-1};
(2)函数f(x)=2x2+(2-m)x-m,g(x)=x2-x+2m;
不等式f(x)≤g(x)是2x2+(2-m)x-m≤x2-x+2m,
化简得x2+(3-m)x-3m≤0,
解得(x+3)(x-m)≤0;
∵m>0,∴-3≤x≤m,
∴不等式f(x)≤g(x)的解集是{x|-3≤x≤m}.

点评 本题考查了二次函数与一元二次不等式的解法与应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知空间四点A(2,0,0),B(0,2,1),C(1,1,1),D(-1,m,n).
(1)若AB∥CD,求实数m,n的值;
(2)若m+n=1,且直线AB和CD所成角的余弦值为$\frac{1}{3}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,下列说法正确的是(  )
A.f(x)的图象关于直线x=-$\frac{2π}{3}$对称
B.函数f(x)在[-$\frac{π}{3}$,0]上单调递增
C.f(x)的图象关于点(-$\frac{5π}{12}$,0)对称
D.将函数y=2sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位得到f(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从某工厂生产的P,Q两种型号的玻璃种分别随机抽取8个样品进行检查,对其硬度系数进行统计,统计数据用茎叶图表示(如图所示),则P组数据的众数和Q组数据的中位数分别为(  )
A.22和22.5B.21.5和23C.22和22D.21.5和22.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲乙两位同学进行乒乓球比赛,甲获胜的概率为0.4,现采用随机模拟的方法估计这两位同学打3局比赛甲恰好获胜2局的概率:先利用计算器产生0到9之间取整数值的随机数,制定1,2,3,4表示甲获胜,用5,6,7,8,9,0表示乙获胜,再以每三个随机数为一组,代表3局比赛的结果,经随机模拟产生了30组随机数
102   231   146   027   590   763   245   207   310   386   350   481   337   286   139
579   684   487   370   175   772   235   246   487   569   047   008   341   287   114
据此估计,这两位同学打3局比赛甲恰好获胜2局的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{11}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{-{3}^{x}+a}{{3}^{x+1}+b}$.
(1)当a=b=1时,求满足f(x)=3x的x的值;
(2)若函数f(x)是定义在R上的奇函数,
①判断f(x)在R的单调性并用定义法证明;
②当x≠0时,函数g(x)满足f(x)•[g(x)+2]=$\frac{1}{3}$(3-x-3x),若对任意x∈R且x≠0,不等式g(2x)≥m•g(x)-11恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:实数x满足x2-5ax+4a2<0,其中a>0,命题q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-2x-8≤0}\\{{x}^{2}+3x-10>0}\end{array}\right.$.
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=$\frac{2\sqrt{2}}{3}$,a=2,ccosB+bcosC=2acosB,则b的值为$\frac{3\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若m=-1求A∩B;
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案