精英家教网 > 高中数学 > 题目详情

如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).

(1)求证:EF⊥A′C;
(2)求三棱锥FA′BC的体积.

(1)见解析   (2)

解析(1)证明:在△ABC中,EF是等腰直角△ABC的中位线,
∴EF⊥AC,
在四棱锥A′BCEF中,EF⊥A′E,EF⊥EC,
又EC∩A′E=E,∴EF⊥平面A′EC,
又A′C?平面A′EC,
∴EF⊥A′C.
(2)解:在直角梯形BCEF中,EC=2,BC=4,
∴S△FBC=BC·EC=4,
∵A′O⊥平面BCEF,
∴A′O⊥EC,
又∵O为EC的中点,
∴△A′EC为正三角形,边长为2,
∴A′O=,
==S△FBC·A′O=×4×=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图:已知长方体的底面是边长为的正方形,高的中点,交于点.
(1)求证:平面
(2)求证:∥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,是等边三角形,.

(1)证明::
(2)证明:
(3)若,且平面平面,求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.

(1)求证:平面ADC1⊥平面BCC1B1
(2)求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,圆锥的轴截面为等腰直角为底面圆周上一点.

(1)若的中点为,求证平面
(2)如果,,求此圆锥的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个几何体的三视图如下图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

(1)求该几何体的体积V
(2)求该几何体的表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面

(1)证明:平面.;
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,△PBC为正三角形,PA⊥底面ABCD,其三视图如图所示,俯视图是直角梯形.
 
(1)求正视图的面积;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案