精英家教网 > 高中数学 > 题目详情
若对任意x>0,恒成立,则a的取值范围是(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(1,
1
3
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).记数列{
1
bnbn+1
}前n项和为Tn
(1)求数列{an}和{bn}的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
2
>Tn恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A、B、C是直线l上的三点,向量
OA
OB
OC
满足关系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化简函数y=f(x)的表达式;
(Ⅱ)若函数g(x)=f(
1
2
x+
π
3
)
x∈[0,
12
]
的图象与直线y=b的交点的横坐标成等差数列,试求实数b的值;
(Ⅲ)令函数h(x)=
2
(sinx+cosx)+sin2x-a,若对任意的x1x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax2+bx+c
x+d
(其中a,b,c,d是实数常数,x≠-d)
(1)若a=0,函数f(x)的图象关于点(-1,3)成中心对称,求b,d的值;
(2)若函数f(x)满足条件(1),且对任意x0∈[3,10],总有f(x0)∈[3,10],求c的取值范围;
(3)若b=0,函数f(x)是奇函数,f(1)=0,f(-2)=-
3
2
,且对任意x∈[1,+∞)时,不等式f(mx)+mf(x)恒成立,求负实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设 A、B、C是直线l上的三点,向量
OA
OB
OC
满足关系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化简函数y=f(x)的表达式;
(Ⅱ)若函数g(x)=f(
1
2
x+
π
3
)
x∈[0,
12
]
的图象与直线y=b的交点的横坐标成等差数列,试求实数b的值;
(Ⅲ)令函数h(x)=
2
(sinx+cosx)+sin2x-a,若对任意的x1x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市学军中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知点(1,)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=+(n≥2).记数列{}前n项和为Tn
(1)求数列{an}和{bn}的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+>Tn恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案