精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{(1-x)^{2},x≤0}\\{1-x,x>0}\end{array}\right.$,则f(f(3))=(  )
A.4B.9C.-3D.-2

分析 由已知得f(3)=1-3=-2,从而f(f(3))=f(-2),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(1-x)^{2},x≤0}\\{1-x,x>0}\end{array}\right.$,
∴f(3)=1-3=-2,
f(f(3))=f(-2)=(1+2)2=9.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{(1+a){x}^{2}+1}{bx+c}$为奇函数,其中a,b,c∈Z,又满足f(1)=3,5<f(3)<7.
(1)求函数f(x)的解析式;
(2)用单调性定义,判断函数f(x)在(-∞,0)上的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知A={x|$\sqrt{2-x}$>x},B={x|x(x-3)(x+3)>0},则A∩B={x|-3<x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知下列四个命题:
①函数f(x)=$\frac{1}{3}$x-lnx(x>0),则y=f(x)在区间($\frac{1}{e}$,1)内无零点,在区间(1,e)内有零点;
②函数f(x)=log2(x+$\sqrt{1+{x^2}}$),g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函数;
③若函数f(x)满足f(x-1)=-f(x+1),且f(1)=2,则f(7)=-2;
④设x1、x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1,
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},
(1)求A∩B,A∪B;
(2)若集合C={x|a<x<2a+6},A⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=|x+a|的图象关于y轴对称,则f(x)的单调减区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设动点P在正方体A1B1C1D1-ABCD的内部随机移动,则△ABP是锐角三角形的概率为1-$\frac{π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:方程x2+y2-ax+y+1=0表示圆;命题q:方程2ax+(1-a)y+1=0表示斜率大于1的直线,若p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

同步练习册答案